Question Number 109775 by ZiYangLee last updated on 25/Aug/20
$$\mathrm{log}_{{a}} \left(\mathrm{3}{x}−\mathrm{4}{a}\right)+\mathrm{log}_{{a}} \mathrm{3}{x}=\frac{\mathrm{2}}{\mathrm{log}_{\mathrm{2}} {a}}+\mathrm{log}_{{a}} \left(\mathrm{1}−\mathrm{2}{a}\right),\:\mathrm{where}\:\mathrm{0}<{a}<\frac{\mathrm{1}}{\mathrm{2}}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}. \\ $$
Answered by bemath last updated on 25/Aug/20
$$\:\:\:\bigtriangleup\frac{\flat{e}}{{math}}\bigtriangledown \\ $$$$\mathrm{log}\:_{{a}} \left(\mathrm{3}{x}\left(\mathrm{3}{x}−\mathrm{4}{a}\right)\right)=\:\mathrm{2log}\:_{{a}} \left(\mathrm{2}\right)+\mathrm{log}\:_{{a}} \left(\mathrm{1}−\mathrm{2}{a}\right) \\ $$$$\mathrm{log}\:_{{a}} \left(\mathrm{9}{x}^{\mathrm{2}} −\mathrm{12}{ax}\right)=\:\mathrm{log}\:_{{a}} \left(\mathrm{4}\left(\mathrm{1}−\mathrm{2}{a}\right)\right) \\ $$$$\mathrm{9}{x}^{\mathrm{2}} −\mathrm{12}{ax}\:=\:\mathrm{4}−\mathrm{8}{a} \\ $$$$\mathrm{9}{x}^{\mathrm{2}} −\mathrm{12}{ax}+\mathrm{8}{a}−\mathrm{4}=\mathrm{0}\:;\:{where}\:{x}\:>\:\frac{\mathrm{4}{a}}{\mathrm{3}},\:\mathrm{0}<{a}<\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${x}\:=\:\frac{\mathrm{12}{a}\:+\:\sqrt{\mathrm{144}{a}^{\mathrm{2}} −\mathrm{4}.\mathrm{9}\left(\mathrm{8}{a}−\mathrm{4}\right)}}{\mathrm{18}} \\ $$$${x}=\frac{\mathrm{12}{a}+\mathrm{12}\sqrt{{a}^{\mathrm{2}} −\left(\mathrm{2}{a}−\mathrm{1}\right)}}{\mathrm{18}} \\ $$$${x}=\frac{\mathrm{2}{a}+\mathrm{2}\sqrt{{a}^{\mathrm{2}} −\mathrm{2}{a}+\mathrm{1}}}{\mathrm{3}}\:=\:\frac{\mathrm{2}{a}+\mathrm{2}\sqrt{\left({a}−\mathrm{1}\right)^{\mathrm{2}} }}{\mathrm{3}} \\ $$$${x}=\frac{\mathrm{2}{a}+\mathrm{2}\mid{a}−\mathrm{1}\mid}{\mathrm{3}}=\frac{\mathrm{2}{a}−\mathrm{2}\left({a}−\mathrm{1}\right)}{\mathrm{3}}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\leftarrow{the}\:{answer} \\ $$$${note}\:\mid{a}−\mathrm{1}\mid\:=\:−\left({a}−\mathrm{1}\right)\:{for}\:\mathrm{0}<{a}<\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by ZiYangLee last updated on 25/Aug/20
$$\mathrm{Why}\:\mathrm{log}_{{a}} \left(\mathrm{4}{a}\left(\mathrm{1}−\mathrm{2}{a}\right)\right)\:\mathrm{at}\:\mathrm{the}\:\mathrm{second}\:\mathrm{row}? \\ $$$$ \\ $$
Commented by bemath last updated on 25/Aug/20
$$\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{2}} \left({a}\right)}\:=\:\mathrm{log}\:_{{a}} \left(\mathrm{2}\right) \\ $$
Commented by Coronavirus last updated on 25/Aug/20
$$\mathrm{log}_{\mathrm{2}} \left(\mathrm{a}\right)=\frac{\mathrm{ln}\left(\mathrm{a}\right)\:}{\mathrm{ln}\left(\mathrm{2}\right)\:}\Rightarrow\frac{\mathrm{2}}{\mathrm{log}_{\mathrm{2}} \left(\mathrm{a}\right)}=\frac{\mathrm{2ln}\left(\mathrm{2}\right)\:}{\mathrm{ln}\left(\mathrm{a}\right)\:}=\frac{\mathrm{ln}\left(\mathrm{4}\right)\:}{\mathrm{ln}\left(\mathrm{a}\right)\:}=\mathrm{log}_{\mathrm{a}} \left(\mathrm{4}\right) \\ $$
Answered by Rasheed.Sindhi last updated on 25/Aug/20
$$\mathrm{log}_{{a}} \left(\mathrm{3}{x}−\mathrm{4}{a}\right)+\mathrm{log}_{{a}} \mathrm{3}{x}−\mathrm{log}_{{a}} \left(\mathrm{1}−\mathrm{2}{a}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}}{\mathrm{log}_{\mathrm{2}} {a}} \\ $$$$\mathrm{log}_{{a}} \left(\frac{\mathrm{3}{x}\left(\mathrm{3}{x}−\mathrm{4}{a}\right)}{\left(\mathrm{1}−\mathrm{2}{a}\right)}\right)=\frac{\mathrm{2}}{\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{log}_{{a}} \mathrm{2}}\:\:\:\:} \\ $$$$\mathrm{log}_{{a}} \left(\frac{\mathrm{3}{x}\left(\mathrm{3}{x}−\mathrm{4}{a}\right)}{\left(\mathrm{1}−\mathrm{2}{a}\right)}\right)=\mathrm{2log}_{{a}} \mathrm{2} \\ $$$$\mathrm{log}_{{a}} \left(\frac{\mathrm{3}{x}\left(\mathrm{3}{x}−\mathrm{4}{a}\right)}{\left(\mathrm{1}−\mathrm{2}{a}\right)}\right)=\mathrm{log}_{{a}} \mathrm{2}^{\mathrm{2}} \\ $$$$\frac{\mathrm{3}{x}\left(\mathrm{3}{x}−\mathrm{4}{a}\right)}{\left(\mathrm{1}−\mathrm{2}{a}\right)}=\mathrm{2}^{\mathrm{2}} \\ $$$$\mathrm{9}{x}^{\mathrm{2}} −\mathrm{12}{ax}=\mathrm{4}\left(\mathrm{1}−\mathrm{2}{a}\right) \\ $$$$\mathrm{9}{x}^{\mathrm{2}} −\mathrm{12}{ax}−\mathrm{4}\left(\mathrm{1}−\mathrm{2}{a}\right)=\mathrm{0} \\ $$$${x}=\frac{\mathrm{12}{a}\pm\sqrt{\mathrm{144}{a}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{9}\right)\left(−\mathrm{4}\left(\mathrm{1}−\mathrm{2}{a}\right)\right.}}{\mathrm{2}\left(\mathrm{9}\right)} \\ $$$${x}=\frac{\mathrm{12}{a}\pm\sqrt{\mathrm{144}{a}^{\mathrm{2}} +\mathrm{144}\left(\mathrm{1}−\mathrm{2}{a}\right)}}{\mathrm{18}} \\ $$$${x}=\frac{\mathrm{12}{a}\pm\mathrm{12}\sqrt{{a}^{\mathrm{2}} −\mathrm{2}{a}+\mathrm{1}}}{\mathrm{18}} \\ $$$${x}=\frac{\mathrm{2}{a}\pm\mathrm{2}\left({a}−\mathrm{1}\right)}{\mathrm{3}}=\frac{\mathrm{2}{a}\pm\mathrm{2}{a}\mp\mathrm{2}}{\mathrm{3}} \\ $$$${x}=\mathrm{4}{a}−\mathrm{2}\:,\:\mathrm{2}\:\:\:\blacktriangleleft\:\: \\ $$$$ \\ $$
Answered by Her_Majesty last updated on 25/Aug/20
$${a}>\mathrm{0}\wedge{a}\neq\mathrm{1}\wedge\mathrm{1}−\mathrm{2}{a}>\mathrm{0}\wedge\mathrm{1}−\mathrm{2}{a}\neq\mathrm{1}\:\Leftrightarrow\:\mathrm{0}<{a}<\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{3}{x}>\mathrm{0}\wedge\mathrm{3}{x}−\mathrm{4}{a}>\mathrm{0}\:\Leftrightarrow\:{x}>\frac{\mathrm{4}{a}}{\mathrm{3}} \\ $$$$\frac{{ln}\left(\mathrm{3}{x}−\mathrm{4}{a}\right)}{{lna}}+\frac{{ln}\mathrm{3}{x}}{{lna}}=\frac{\mathrm{2}{ln}\mathrm{2}}{{lna}}+\frac{{ln}\left(\mathrm{1}−\mathrm{2}{a}\right)}{{lna}} \\ $$$${ln}\left(\mathrm{3}{x}\left(\mathrm{3}{x}−\mathrm{4}{a}\right)\right)={ln}\left(\mathrm{4}\left(\mathrm{1}−\mathrm{2}{a}\right)\right) \\ $$$$\mathrm{3}{x}\left(\mathrm{3}{x}−\mathrm{4}{a}\right)=\mathrm{4}\left(\mathrm{1}−\mathrm{2}{a}\right) \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{4}{a}}{\mathrm{3}}{x}+\frac{\mathrm{4}\left(\mathrm{2}{a}−\mathrm{1}\right)}{\mathrm{9}}=\mathrm{0} \\ $$$$\left({x}−\frac{\mathrm{2}}{\mathrm{3}}\right)\left({x}−\frac{\mathrm{2}\left(\mathrm{2}{a}−\mathrm{1}\right)}{\mathrm{3}}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${x}_{\mathrm{2}} =\frac{\mathrm{2}\left(\mathrm{2}{a}−\mathrm{1}\right)}{\mathrm{3}}\:{but}\:\mathrm{0}<{a}<\frac{\mathrm{1}}{\mathrm{2}}\wedge{x}>\frac{\mathrm{4}{a}}{\mathrm{3}}\:{makes} \\ $$$${this}\:{impossible}: \\ $$$${x}>\frac{\mathrm{4}{a}}{\mathrm{3}}\wedge{x}=\frac{\mathrm{4}{a}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\:{is}\:{false} \\ $$