Menu Close

log-ab-log-b-A-log-a-B-log-a-C-log-a-D-None-of-these-




Question Number 113800 by Aina Samuel Temidayo last updated on 15/Sep/20
log (ab)−log∣b∣ =    A. log(a) B. log ∣a∣ C. −log(a) D.  None of these.
log(ab)logb=A.log(a)B.logaC.log(a)D.Noneofthese.
Answered by MJS_new last updated on 15/Sep/20
(1) a<0∧b<0  log ab −log ∣b∣ =log (−a)  (2) a>0∧b>0  log ab −log ∣b∣ =log a  ⇒ answer is B. log ∣a∣
(1)a<0b<0logablogb=log(a)(2)a>0b>0logablogb=logaanswerisB.loga
Commented by MJS_new last updated on 15/Sep/20
test it.  i.e. a=−3∧b=−5  log ab =log 15  log ∣b∣ =log 5  log 15 −log 5 =log 3 =log −a  ⇒ if a<0∧b<0 we get log −a (but a<0 ⇒ −a>0)        if a>0∧b>0 we get log a  ⇒ we get log ∣a∣
testit.i.e.a=3b=5logab=log15logb=log5log15log5=log3=logaifa<0b<0wegetloga(buta<0a>0)ifa>0b>0wegetlogawegetloga
Commented by Aina Samuel Temidayo last updated on 15/Sep/20
log(ab) = log(a)+log(b)   ⇒a,b is +ve  ⇒ log∣b∣ = log b   ⇒ log(ab) −log∣b∣   =log(ab)−log (b)  =log(((ab)/b)) = log(a).
log(ab)=log(a)+log(b)a,bis+velogb=logblog(ab)logb=log(ab)log(b)=log(abb)=log(a).
Commented by Aina Samuel Temidayo last updated on 15/Sep/20
a,b cannot be −ve.
a,bcannotbeve.
Commented by Aina Samuel Temidayo last updated on 15/Sep/20
From (1), you said a<0∧b<0  ⇒ ab >0  Note that ∣b∣ >0  ⇒ ((ab)/(∣b∣)) is +ve
From(1),yousaida<0b<0ab>0Notethatb>0abbis+ve
Commented by MJS_new last updated on 15/Sep/20
you misunderstand ∣x∣ it seems. remember  ∣x∣= { ((−x; x<0)),((x; x≥0)) :}
youmisunderstandxitseems.rememberx∣={x;x<0x;x0
Commented by Aina Samuel Temidayo last updated on 15/Sep/20
since log(ab) = log(a)+log(b)  a,b should not be negative..
sincelog(ab)=log(a)+log(b)a,bshouldnotbenegative..
Commented by MJS_new last updated on 15/Sep/20
no. log ab =log a +log b only if a>0∧b>0  log ab exists if ab>0 ⇒ a>0∧b>0 ∨ a<0∧b<0  if a<0∧b<0 ⇒ log ab ≠ log a +log b  but we can still calculate log ab −log ∣b∣  because ab>0∧∣b∣>0 and we get log ∣a∣  because a<0 but the argument we get is >0
no.logab=loga+logbonlyifa>0b>0logabexistsifab>0a>0b>0a<0b<0ifa<0b<0logabloga+logbbutwecanstillcalculatelogablogbbecauseab>0b∣>0andwegetlogabecausea<0buttheargumentwegetis>0
Commented by Aina Samuel Temidayo last updated on 15/Sep/20
Ok. Thanks.^
Ok.Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *