Menu Close

log-e-e-2-x-lnx-log-e-x-3-faind-x-




Question Number 169798 by mathlove last updated on 09/May/22
log_e (e^2 x^(lnx) )=log_e (x^3 )  faind  x=?
$${log}_{{e}} \left({e}^{\mathrm{2}} {x}^{{lnx}} \right)={log}_{{e}} \left({x}^{\mathrm{3}} \right) \\ $$$${faind}\:\:{x}=? \\ $$
Commented by cortano1 last updated on 09/May/22
 ⇒2+(ln x)^2  = 3 ln x  ⇒(ln x)^2 −3 ln x+2 = 0  ⇒ { ((ln x=2⇒x=e^2 )),((ln x=1⇒x= e)) :}
$$\:\Rightarrow\mathrm{2}+\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} \:=\:\mathrm{3}\:\mathrm{ln}\:{x} \\ $$$$\Rightarrow\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} −\mathrm{3}\:\mathrm{ln}\:{x}+\mathrm{2}\:=\:\mathrm{0} \\ $$$$\Rightarrow\begin{cases}{\mathrm{ln}\:{x}=\mathrm{2}\Rightarrow{x}={e}^{\mathrm{2}} }\\{\mathrm{ln}\:{x}=\mathrm{1}\Rightarrow{x}=\:{e}}\end{cases} \\ $$
Commented by mathlove last updated on 09/May/22
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *