Menu Close

log-x-1-1-log-x-2-2-dx-x-log-x-2-1-C-




Question Number 44604 by arvinddayama01@gmail.com last updated on 02/Oct/18
∫[((log x  −  1)/(1+(log x)^2 ))]^2 dx  =  (x/((log x)^2 +1))+C
[logx11+(logx)2]2dx=x(logx)2+1+C
Commented by prof Abdo imad last updated on 02/Oct/18
let ϕ(x)=(x/(1+(lnx)^2 ))  we have  ϕ^′ (x)=((1+(lnx)^2 −x(2ln(x)(1/x)))/((1+(ln(x))^2 )^2 ))  =((1+(lnx)^2 −2ln(x))/((1+(lnx)^2 ))) =(((ln(x)−1)/(1+(lnx)^2 )))^2  ⇒  ∫  (((ln(x)−1)/(1+(lnx)^2 )))^2 dx=(x/(1+(lnx)^2 )) +c .
letφ(x)=x1+(lnx)2wehaveφ(x)=1+(lnx)2x(2ln(x)1x)(1+(ln(x))2)2=1+(lnx)22ln(x)(1+(lnx)2)=(ln(x)11+(lnx)2)2(ln(x)11+(lnx)2)2dx=x1+(lnx)2+c.
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Oct/18
(d/dx)((u/v))=((v(du/dx)−u(dv/dx))/v^2 )  ∫(((^ lnx)^2 +1−2lnx)/({1+(lnx)^2 }^2 ))dx  ∫(({1+(lnx)^2 }(dx/dx)−x.(d/dx){1+(lnx)^2 } )/({1+(lnx)^2 ))dx  ∫(d/dx){(x/(1+(lnx)^2 ))}dx  ∫d{(x/(1+(lnx)^2 ))}  (x/(1+(lnx)^2 ))+c
ddx(uv)=vdudxudvdxv2(lnx)2+12lnx{1+(lnx)2}2dx{1+(lnx)2}dxdxx.ddx{1+(lnx)2}{1+(lnx)2dxddx{x1+(lnx)2}dxd{x1+(lnx)2}x1+(lnx)2+c
Commented by arvinddayama01@gmail.com last updated on 02/Oct/18
Thanks
Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *