Question Number 35897 by imamu222 last updated on 25/May/18
$${log}_{{x}^{\mathrm{1}/\mathrm{2}\:} } \mathrm{64}=\mathrm{3}.\:{What}\:{is}\:{x}? \\ $$
Commented by Cheyboy last updated on 25/May/18
$${log}_{{x}^{\mathrm{1}/\mathrm{2}} } \mathrm{64}=\mathrm{3} \\ $$$$\mathrm{64}=\left({x}^{\mathrm{1}/\mathrm{2}} \right)^{\mathrm{3}} \\ $$$$\mathrm{64}={x}^{\mathrm{3}/\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)^{\mathrm{6}} ={x}^{\mathrm{3}/\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)^{\mathrm{6}×\mathrm{2}/\mathrm{3}} ={x} \\ $$$$\mathrm{2}^{\mathrm{4}} ={x} \\ $$$${x}=\mathrm{16} \\ $$
Commented by imamu222 last updated on 25/May/18
$${Thanks}\:{a}\:{lot} \\ $$