Menu Close

log-x-2-2-x-2-4x-




Question Number 167746 by mathlove last updated on 24/Mar/22
log_((x^2 +2)) (x^2 +4x)=?
$${log}_{\left({x}^{\mathrm{2}} +\mathrm{2}\right)} \left({x}^{\mathrm{2}} +\mathrm{4}{x}\right)=? \\ $$
Commented by MJS_new last updated on 24/Mar/22
log_(x^2 +2)  (x^2 +4x) =((ln (x^2 +4x))/(ln (x^2 +2)))=((ln x +ln (x+4))/(ln (x^2 +2)))  ⇒  x>0
$$\mathrm{log}_{{x}^{\mathrm{2}} +\mathrm{2}} \:\left({x}^{\mathrm{2}} +\mathrm{4}{x}\right)\:=\frac{\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{4}{x}\right)}{\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{2}\right)}=\frac{\mathrm{ln}\:{x}\:+\mathrm{ln}\:\left({x}+\mathrm{4}\right)}{\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{2}\right)} \\ $$$$\Rightarrow \\ $$$${x}>\mathrm{0} \\ $$
Answered by LEKOUMA last updated on 24/Mar/22
log _((x^2 +2)) (x^2 +4x)=((log (x^2 +4x))/(log (x^2 +2)))
$$\mathrm{log}\:_{\left({x}^{\mathrm{2}} +\mathrm{2}\right)} \left({x}^{\mathrm{2}} +\mathrm{4}{x}\right)=\frac{\mathrm{log}\:\left({x}^{\mathrm{2}} +\mathrm{4}{x}\right)}{\mathrm{log}\:\left({x}^{\mathrm{2}} +\mathrm{2}\right)} \\ $$
Commented by MJS_new last updated on 24/Mar/22
you cannot find x because there′s no equation
$$\mathrm{you}\:\mathrm{cannot}\:\mathrm{find}\:{x}\:\mathrm{because}\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{equation} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *