Menu Close

log-x-2-log2-x-e-2-1-e-x-




Question Number 161215 by mathlove last updated on 14/Dec/21
log x_2 +log2_x =((e^2 +1)/e)          x=?
logx2+log2x=e2+1ex=?
Commented by cortano last updated on 14/Dec/21
 let  { ((log _2 (x)=u)),((log _x (2)=(1/u))) :}   ⇒u+(1/u) = e+e^(−1)   ⇒u^2 −(e+e^(−1) )u+1=0  ⇒u = ((e+e^(−1) ± (√(e^2 +e^(−2) −2)))/2)  ⇒u = ((e+e^(−1)  ± (√((e−e^(−1) )^2 )))/2)  ⇒ { ((u_1 = e⇒log _2 (x)=e⇒x=2^e )),((u_2 =e^(−1) ⇒log _2 (x)=e^(−1) ⇒x=2^(1/e) )) :}
let{log2(x)=ulogx(2)=1uu+1u=e+e1u2(e+e1)u+1=0u=e+e1±e2+e222u=e+e1±(ee1)22{u1=elog2(x)=ex=2eu2=e1log2(x)=e1x=21e
Answered by Rasheed.Sindhi last updated on 14/Dec/21
log_2 x+log_x 2=((e^2 +1)/e)    log_2 x+(1/(log_2 x))=e+(1/e)  log_2 x=e,(1/e)⇒x=2^e ,2^(1/e)
log2x+logx2=e2+1elog2x+1log2x=e+1elog2x=e,1ex=2e,21/e
Commented by cortano last updated on 14/Dec/21
how about  { ((log _2 (x)=(1/e))),((log _x (2)=e)) :} ?
howabout{log2(x)=1elogx(2)=e?
Commented by Rasheed.Sindhi last updated on 14/Dec/21
You′re right! I extended my answer.
Youreright!Iextendedmyanswer.

Leave a Reply

Your email address will not be published. Required fields are marked *