log-x-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 93481 by mashallah last updated on 13/May/20 ∫(logx/x2)dx= Commented by abdomathmax last updated on 15/May/20 I=∫lnxx2dxbypartsI=−lnxx−∫(−1x)×dxx=−lnxx+∫dxx2=−lnxx−1x+C=−1+lnxx+C Answered by john santu last updated on 13/May/20 ∫lnxx2dx=∫ln(x).x−2dx=W[byparts]u=ln(x)⇒du=dxxv=∫x−2dx=−x−1W=−x−1ln(x)+∫x−1.dxxW=−ln(x)x−1x+cW=−ln(x)+1x+c Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-Calculate-f-x-2-3-if-f-x-y-x-2-y-2-2-Calculate-df-x-y-for-x-1-y-0-dx-1-2-and-dy-1-4-if-f-x-y-x-2-y-2-Next Next post: prove-that-the-equation-of-the-normal-to-the-rectangular-hyperbola-xy-c-2-at-the-point-P-ct-c-t-is-t-3-x-ty-c-t-4-1-the-normal-to-P-on-the-hyperbola-meets-the-x-axis-at-Q-and-the-tangent- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.