Menu Close

log-x-x-2-dx-




Question Number 93481 by mashallah last updated on 13/May/20
∫(log x/x^2 )dx=
(logx/x2)dx=
Commented by abdomathmax last updated on 15/May/20
I =∫ ((lnx)/x^2 )dx  by parts  I =−((lnx)/x) −∫ (−(1/x))×(dx/x) =−((lnx)/x) +∫ (dx/x^2 )  =−((lnx)/x)−(1/x) +C =−((1+lnx)/x) +C
I=lnxx2dxbypartsI=lnxx(1x)×dxx=lnxx+dxx2=lnxx1x+C=1+lnxx+C
Answered by john santu last updated on 13/May/20
∫ ((ln x)/x^2 ) dx = ∫ ln(x).x^(−2)  dx =W  [ by parts ]   u = ln(x) ⇒du = (dx/x)  v= ∫ x^(−2)  dx = −x^(−1)   W= −x^(−1)  ln(x) + ∫ x^(−1)  . (dx/x)  W= −((ln(x))/x) −(1/x) + c   W = − ((ln(x)+1)/x) + c
lnxx2dx=ln(x).x2dx=W[byparts]u=ln(x)du=dxxv=x2dx=x1W=x1ln(x)+x1.dxxW=ln(x)x1x+cW=ln(x)+1x+c

Leave a Reply

Your email address will not be published. Required fields are marked *