Menu Close

log-x-x-y-A-log-y-y-x-




Question Number 148573 by mathdanisur last updated on 29/Jul/21
log_(√x)  (x/y) = A  ⇒  log_(√y)  (y/x) = ?
logxxy=Alogyyx=?
Answered by Ar Brandon last updated on 29/Jul/21
A=log_(√x) (x/y)=log_(√x) x−log_(√x) y      =log_(√x) (√x) ^2 −((log_(√y) y)/(log_(√y) (√x)))=2−(2/(log_(√y) (√x)))  ⇒log_(√y) (√x)=(2/(2−A))  ⇒log_(√y) (y/x)=2−log_(√y) x=2−(4/(2−A))
A=logxxy=logxxlogxy=logxx2logyylogyx=22logyxlogyx=22Alogyyx=2logyx=242A
Commented by puissant last updated on 29/Jul/21
log((x/y))=log(x)−log(y)..
log(xy)=log(x)log(y)..
Commented by Ar Brandon last updated on 29/Jul/21
Merci pour la remarque.
Mercipourlaremarque.
Commented by mathdanisur last updated on 29/Jul/21
Thank you Sir
ThankyouSir
Commented by Ar Brandon last updated on 29/Jul/21
You′re welcome !
Yourewelcome!
Answered by EDWIN88 last updated on 29/Jul/21
log _(√x) ((x/y))=A ⇒2log _x ((x/y))=A  log _x ((y/x))=−(A/2)⇒(y/x)=x^(−(A/2))   ⇒y=x^(1−(A/2))   log _(√y) ((y/x))=2log _y ((y/x))  = 2log_y  (x^(−(A/2)) )  =−Alog _y (x) =−Alog _((x^(1−(A/2)) )) (x)  =−A((2/(2−A)))log _x (x)  =((2A)/(A−2)) .
logx(xy)=A2logx(xy)=Alogx(yx)=A2yx=xA2y=x1A2logy(yx)=2logy(yx)=2logy(xA2)=Alogy(x)=Alog(x1A2)(x)=A(22A)logx(x)=2AA2.
Commented by mathdanisur last updated on 29/Jul/21
Thank you Ser
ThankyouSer

Leave a Reply

Your email address will not be published. Required fields are marked *