Menu Close

log-x-y-1-log-2-x-log-4-y-2-4-




Question Number 42289 by mondodotto@gmail.com last updated on 22/Aug/18
log(x+y)=1  log_2 x+log_4 y^2 =4
log(x+y)=1log2x+log4y2=4
Commented by math khazana by abdo last updated on 22/Aug/18
⇒x+y =e and  ((ln(x))/(ln(2))) +((ln(y^2 ))/(ln(4))) =4 ⇒  x+y =e and ln(x) +ln(y) =4ln(2) =ln(2^4 ) ⇒  x+y =e and ln(xy) =ln(16) ⇒  x+y =e and xy =16 ⇒ xand y are solution of the  equation u^2  −eu +16 =0  Δ =e^2 −4(16) =e^2 −64  if x and y are real ⇒no solution if x and y are  complex ⇒ u_1 =((e+i(√(64−e^2 )))/2)  u_2 =((e −i(√(64−e^2 )))/2)  .
x+y=eandln(x)ln(2)+ln(y2)ln(4)=4x+y=eandln(x)+ln(y)=4ln(2)=ln(24)x+y=eandln(xy)=ln(16)x+y=eandxy=16xandyaresolutionoftheequationu2eu+16=0Δ=e24(16)=e264ifxandyarerealnosolutionifxandyarecomplexu1=e+i64e22u2=ei64e22.
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Aug/18
x+y=e^1 =e  ((lnx)/(ln2))+((2lny)/(2ln2))=4  lnx+lny=4ln2  ln(xy)=ln2^4   xy=16  x+y=e  x(e−x)=16  xe−x^2 −16=0  x^2 −xe+16=0  x=((e±(√(e^2 −64)))/2)=((e±i(√(64−e^2 )))/2)  y=e−((e±(√(e^2 −64)))/2)=((e−_+ (√(e^2 −64)))/2)=((e−_+ i(√(64−e^2 )))/2)  or  if log(x+y)=1      log_(10) (x+y)=1  x+y=10  then x=((10±(√(100−64)))/2)=((10±6)/2)=8  and 2  so y=2 and 8
x+y=e1=elnxln2+2lny2ln2=4lnx+lny=4ln2ln(xy)=ln24xy=16x+y=ex(ex)=16xex216=0x2xe+16=0x=e±e2642=e±i64e22y=ee±e2642=e+e2642=e+i64e22oriflog(x+y)=1log10(x+y)=1x+y=10thenx=10±100642=10±62=8and2soy=2and8

Leave a Reply

Your email address will not be published. Required fields are marked *