Menu Close

Log-y-x-Log-x-y-64-find-x-and-y-




Question Number 82821 by VBash last updated on 24/Feb/20
Log_y  x+Log_x  y =64  find x and y
$${Log}_{{y}} \:{x}+{Log}_{{x}} \:{y}\:=\mathrm{64} \\ $$$${find}\:{x}\:{and}\:{y} \\ $$
Commented by MJS last updated on 24/Feb/20
one equation in two unknown gives a  parametric solution  ((ln x)/(ln y))+((ln y)/(ln x))=64; x>0∧y>0  ⇒  (ln x)^2 −(64ln y)ln x +(ln y)^2 =0  ⇒  ln x =(32 ±(√(1023)))ln y  ⇒  x=y^(32±(√(1023)))  ∀ y>0
$$\mathrm{one}\:\mathrm{equation}\:\mathrm{in}\:\mathrm{two}\:\mathrm{unknown}\:\mathrm{gives}\:\mathrm{a} \\ $$$$\mathrm{parametric}\:\mathrm{solution} \\ $$$$\frac{\mathrm{ln}\:{x}}{\mathrm{ln}\:{y}}+\frac{\mathrm{ln}\:{y}}{\mathrm{ln}\:{x}}=\mathrm{64};\:{x}>\mathrm{0}\wedge{y}>\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} −\left(\mathrm{64ln}\:{y}\right)\mathrm{ln}\:{x}\:+\left(\mathrm{ln}\:{y}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\mathrm{ln}\:{x}\:=\left(\mathrm{32}\:\pm\sqrt{\mathrm{1023}}\right)\mathrm{ln}\:{y} \\ $$$$\Rightarrow \\ $$$${x}={y}^{\mathrm{32}\pm\sqrt{\mathrm{1023}}} \:\forall\:{y}>\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *