Menu Close

logx-1-x-x-dx-please-help-this-




Question Number 49003 by mondodotto@gmail.com last updated on 01/Dec/18
∫((logx)/( (√(1−x^x ))))dx  please help this
$$\int\frac{\boldsymbol{\mathrm{log}{x}}}{\:\sqrt{\mathrm{1}−\boldsymbol{{x}}^{\boldsymbol{{x}}} }}\boldsymbol{\mathrm{d}{x}} \\ $$$$\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{help}}\:\boldsymbol{\mathrm{this}} \\ $$
Commented by maxmathsup by imad last updated on 01/Dec/18
I =∫   ((ln(x))/( (√(1−e^(xln(x)) ))))dx  changement xln(x)=t give (ln(x)+1)dx =dt  I =∫ ((ln(x)+1−1)/( (√(1−x^x ))))dx =∫  ((ln(x)+1)/( (√(1−e^(xlnx) ))))dx −∫   (dx/( (√(1−x^x ))))  =∫ (dt/( (√(1−t))))  −∫   (dx/( (√(1−x^x )))) =−2(√(1−t)) −∫ (dx/( (√(1−x^x )))) =−2(√(1−x^x )) −∫   (dx/( (√(1−x^x ))))  let find ∫   (dx/( (√(1−x^x ))))  at form of serie due to  0<x^x <1  we have (1+u)^α  =1+((αu)/(1!)) +((α(α−1))/(2!)) u^2  +....+((α(α−1)...(α−n+1))/(n!)) u^n  +... ⇒  (1−u)^α  =1−αu +((α(α−1))/(2!)) u^2   +((α(α−1)...(α−n+1))/(n!))(−1)^n u^n  +... ⇒  (1−x^x )^(−(1/2))  =1+(1/2) x^x   +(((−(1/2))(−(3/2)))/(2!)) x^(2x)  +...(((−(1/2))(−(3/2))...(−(1/2)−n+1))/(n!)) (−1)^n  x^(nx) +...  ⇒∫  (dx/( (√(1−x^x )))) =x +(1/2) ∫ x^x dx +∫  (3/(4 2!)) x^(2x) dx +...  +(((−(1/2))(−(3/2))....(−(1/2)−n+1))/(n!)) (−1)^(n )  ∫   x^(nx) dx+....
$${I}\:=\int\:\:\:\frac{{ln}\left({x}\right)}{\:\sqrt{\mathrm{1}−{e}^{{xln}\left({x}\right)} }}{dx}\:\:{changement}\:{xln}\left({x}\right)={t}\:{give}\:\left({ln}\left({x}\right)+\mathrm{1}\right){dx}\:={dt} \\ $$$${I}\:=\int\:\frac{{ln}\left({x}\right)+\mathrm{1}−\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{{x}} }}{dx}\:=\int\:\:\frac{{ln}\left({x}\right)+\mathrm{1}}{\:\sqrt{\mathrm{1}−{e}^{{xlnx}} }}{dx}\:−\int\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{{x}} }} \\ $$$$=\int\:\frac{{dt}}{\:\sqrt{\mathrm{1}−{t}}}\:\:−\int\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{{x}} }}\:=−\mathrm{2}\sqrt{\mathrm{1}−{t}}\:−\int\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{{x}} }}\:=−\mathrm{2}\sqrt{\mathrm{1}−{x}^{{x}} }\:−\int\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{{x}} }} \\ $$$${let}\:{find}\:\int\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{{x}} }}\:\:{at}\:{form}\:{of}\:{serie}\:{due}\:{to}\:\:\mathrm{0}<{x}^{{x}} <\mathrm{1} \\ $$$${we}\:{have}\:\left(\mathrm{1}+{u}\right)^{\alpha} \:=\mathrm{1}+\frac{\alpha{u}}{\mathrm{1}!}\:+\frac{\alpha\left(\alpha−\mathrm{1}\right)}{\mathrm{2}!}\:{u}^{\mathrm{2}} \:+….+\frac{\alpha\left(\alpha−\mathrm{1}\right)…\left(\alpha−{n}+\mathrm{1}\right)}{{n}!}\:{u}^{{n}} \:+…\:\Rightarrow \\ $$$$\left(\mathrm{1}−{u}\right)^{\alpha} \:=\mathrm{1}−\alpha{u}\:+\frac{\alpha\left(\alpha−\mathrm{1}\right)}{\mathrm{2}!}\:{u}^{\mathrm{2}} \:\:+\frac{\alpha\left(\alpha−\mathrm{1}\right)…\left(\alpha−{n}+\mathrm{1}\right)}{{n}!}\left(−\mathrm{1}\right)^{{n}} {u}^{{n}} \:+…\:\Rightarrow \\ $$$$\left(\mathrm{1}−{x}^{{x}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:{x}^{{x}} \:\:+\frac{\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)}{\mathrm{2}!}\:{x}^{\mathrm{2}{x}} \:+…\frac{\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)…\left(−\frac{\mathrm{1}}{\mathrm{2}}−{n}+\mathrm{1}\right)}{{n}!}\:\left(−\mathrm{1}\right)^{{n}} \:{x}^{{nx}} +… \\ $$$$\Rightarrow\int\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{{x}} }}\:={x}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int\:{x}^{{x}} {dx}\:+\int\:\:\frac{\mathrm{3}}{\mathrm{4}\:\mathrm{2}!}\:{x}^{\mathrm{2}{x}} {dx}\:+… \\ $$$$+\frac{\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)….\left(−\frac{\mathrm{1}}{\mathrm{2}}−{n}+\mathrm{1}\right)}{{n}!}\:\left(−\mathrm{1}\right)^{{n}\:} \:\int\:\:\:{x}^{{nx}} {dx}+…. \\ $$
Commented by MJS last updated on 01/Dec/18
where did you find this?
$$\mathrm{where}\:\mathrm{did}\:\mathrm{you}\:\mathrm{find}\:\mathrm{this}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *