logx-1-x-x-dx-please-help-this- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 49003 by mondodotto@gmail.com last updated on 01/Dec/18 ∫logx1−xxdxpleasehelpthis Commented by maxmathsup by imad last updated on 01/Dec/18 I=∫ln(x)1−exln(x)dxchangementxln(x)=tgive(ln(x)+1)dx=dtI=∫ln(x)+1−11−xxdx=∫ln(x)+11−exlnxdx−∫dx1−xx=∫dt1−t−∫dx1−xx=−21−t−∫dx1−xx=−21−xx−∫dx1−xxletfind∫dx1−xxatformofseriedueto0<xx<1wehave(1+u)α=1+αu1!+α(α−1)2!u2+….+α(α−1)…(α−n+1)n!un+…⇒(1−u)α=1−αu+α(α−1)2!u2+α(α−1)…(α−n+1)n!(−1)nun+…⇒(1−xx)−12=1+12xx+(−12)(−32)2!x2x+…(−12)(−32)…(−12−n+1)n!(−1)nxnx+…⇒∫dx1−xx=x+12∫xxdx+∫342!x2xdx+…+(−12)(−32)….(−12−n+1)n!(−1)n∫xnxdx+…. Commented by MJS last updated on 01/Dec/18 wheredidyoufindthis? Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-114536Next Next post: how-many-trees-can-be-planted-in-one-square-meter-area-if-the-distance-between-each-tow-trees-is-3cm- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.