Menu Close

logx-ab-if-logx-a-30-andlogx-b-70-




Question Number 160939 by mathlove last updated on 09/Dec/21
logx_(ab) =?      if  logx_a =30  andlogx_b =70
logxab=?iflogxa=30andlogxb=70
Commented by blackmamba last updated on 09/Dec/21
  { ((a=x^(1/(30)) )),((b=x^(1/(70)) )) :} ⇒ log _(ab) (x)= log _x^((1/(30))+(1/(70)))  (x)= (1/((1/(30))+(1/(70)))) = 21
{a=x130b=x170logab(x)=logx130+170(x)=1130+170=21
Answered by qaz last updated on 09/Dec/21
log_(ab) x=((lnx)/(ln(ab)))=((lnx)/(lna+lnb))=(1/(((lna)/(lnx))+((lnb)/(lnx))))=(1/((1/(log_a x))+(1/(log_b x))))=(1/((1/(30))+(1/(70))))=21
logabx=lnxln(ab)=lnxlna+lnb=1lnalnx+lnblnx=11logax+1logbx=1130+170=21
Answered by cortano last updated on 09/Dec/21
  { ((log _a (x)=30)),((log _b (x)=70)) :}     log _(ab) (x)= (1/(log _x (ab))) = (1/(log _x (a)+log _x (b)))     = (1/((1/(30))+(1/(70)))) = ((30×70)/(100)) = 21
{loga(x)=30logb(x)=70logab(x)=1logx(ab)=1logx(a)+logx(b)=1130+170=30×70100=21

Leave a Reply

Your email address will not be published. Required fields are marked *