Menu Close

m-1-10-sin-2pim-11-i-cos-2pim-11-Solve-it-




Question Number 17775 by gourav~ last updated on 10/Jul/17
Σ_(m=1) ^(10) (((sin 2πm)/(11)) − i((cos 2πm)/(11))) =?????  Solve..it
10m=1(sin2πm11icos2πm11)=?????Solve..it
Answered by alex041103 last updated on 10/Jul/17
Σ_(m=1) ^(10) (((sin 2πm)/(11)) − i((cos 2πm)/(11))) =  =(1/(11))Σ_(m=1) ^(10) (sin 2πm) − (i/(11))Σ_(m=1) ^(10) (cos 2πm)  Because m∈Z   ⇒sin 2πm = 0 and cos 2πm = 1  Σ_(m=1) ^(10) (((sin 2πm)/(11)) − i((cos 2πm)/(11))) =  =(1/(11))Σ_(m=1) ^(10) (0) − (i/(11))Σ_(m=1) ^(10) (1)  =0×(1/(11)) − (i/(11))×(1)×10  =−((10)/(11))i  Σ_(m=1) ^(10) (((sin 2πm)/(11)) − i((cos 2πm)/(11))) = −((10)/(11))i
10m=1(sin2πm11icos2πm11)==11110m=1(sin2πm)i1110m=1(cos2πm)BecausemZsin2πm=0andcos2πm=110m=1(sin2πm11icos2πm11)==11110m=1(0)i1110m=1(1)=0×111i11×(1)×10=1011i10m=1(sin2πm11icos2πm11)=1011i
Answered by ajfour last updated on 10/Jul/17
=−(i/(11))Σ_(m=0) ^(10) e^(i(2πm))  = −(i/(11))(10)=−((10i)/(11)) .
=i1110m=0ei(2πm)=i11(10)=10i11.

Leave a Reply

Your email address will not be published. Required fields are marked *