Menu Close

m-2-n-2-2mn-m-2-n-2-is-pythagorean-triplet-for-all-m-n-N-This-can-be-proved-easily-Is-the-vice-versa-of-the-statement-is-also-true-I-E-If-for-a-b-c-N-a-2-b




Question Number 23105 by Rasheed.Sindhi last updated on 26/Oct/17
(∣m^2 −n^2 ∣,2mn,m^2 +n^2 ) is pythagorean  triplet for all m,n∈N. This can be  proved easily.Is the vice versa of  the statement is also true?                                  I-E  If  for a,b,c∈N ,a^2 +b^2 =c^2  then there   exist m,n∈N such that m^2 +n^2 =c and  {a,b}={∣m^2 −n^2 ∣,2mn}
(m2n2,2mn,m2+n2)ispythagoreantripletforallm,nN.Thiscanbeprovedeasily.Istheviceversaofthestatementisalsotrue?IEIffora,b,cN,a2+b2=c2thenthereexistm,nNsuchthatm2+n2=cand{a,b}={m2n2,2mn}
Commented by prakash jain last updated on 27/Oct/17
(m^2 −n^2 )^2 +4m^2 n^2 =(m^2 +n^2 )^2   a=m^2 −n^2   b=4m^2 n^2   a=m^2 −n^2   c=m^2 +n^2   m=(√((c+a)/2)), n=(√((c−a)/2))  case (i)  Let us say a and c are odd and b is even.  c=2k+1  a=2l+1  c^2 −a^2 =4(k^2 −l^2 )+4(k−l)  =4(k−l)(k+l−1)  c+a=2(k+l+1)  c−a=2(k−l)  b=2(√((k−l)(k+l+1)))  a=(m^2 −n^2 ),b=4m^2 n^2  if  to prove: (k−l) and (k+l+1) are both whole  squares.  it is easy to see if (k−l) is whole  square then (k+l+1) has to be  a whole square since b is an integer.  assume k−l=h^2 p where p is not  whole square then (k+l+1)=j^2 p  k=((j^2 p+h^2 p−1)/2), l=((j^2 p−h^2 p−1)/2)  ...(A)  We can easily see below if p  exists in (A) then p is a common  factor of a,b,c  k=((j^2 p+h^2 p−1)/2), l=((j^2 p−h^2 p−1)/2)  ...(A)  a=2l+1=(j^2 −h^2 )p  c=2k+1=(j^2 +h^2 )p  So p exists as in (A) then p is a common  factor of (a,b,c)  Summary  Every pythagorean triple (a,b,c)  can be written in the form  (m^2 −n^2 ,2mn,m^2 −n^2 ) if (a,b,c)  have no common factor  where m=(√((c−a)/2)),n=(√((c+a)/2))
(m2n2)2+4m2n2=(m2+n2)2a=m2n2b=4m2n2a=m2n2c=m2+n2m=c+a2,n=ca2case(i)Letussayaandcareoddandbiseven.c=2k+1a=2l+1c2a2=4(k2l2)+4(kl)=4(kl)(k+l1)c+a=2(k+l+1)ca=2(kl)b=2(kl)(k+l+1)a=(m2n2),b=4m2n2iftoprove:(kl)and(k+l+1)arebothwholesquares.itiseasytoseeif(kl)iswholesquarethen(k+l+1)hastobeawholesquaresincebisaninteger.assumekl=h2pwherepisnotwholesquarethen(k+l+1)=j2pk=j2p+h2p12,l=j2ph2p12(A)Wecaneasilyseebelowifpexistsin(A)thenpisacommonfactorofa,b,ck=j2p+h2p12,l=j2ph2p12(A)a=2l+1=(j2h2)pc=2k+1=(j2+h2)pSopexistsasin(A)thenpisacommonfactorof(a,b,c)SummaryEverypythagoreantriple(a,b,c)canbewrittenintheform(m2n2,2mn,m2n2)if(a,b,c)havenocommonfactorwherem=ca2,n=c+a2
Commented by prakash jain last updated on 26/Oct/17
case (ii)  c even and a and b odd  a=2k+1  b=2i+1  c=2l  (2k+1)^2 +(2i+1)^2 =4l^2   4k^2 +4k+1+4i^2 +4k+1=4l^2   k^2 +k+i^2 +i+(1/2)=l^2   not possible
case(ii)cevenandaandbodda=2k+1b=2i+1c=2l(2k+1)2+(2i+1)2=4l24k2+4k+1+4i2+4k+1=4l2k2+k+i2+i+12=l2notpossible
Commented by Rasheed.Sindhi last updated on 27/Oct/17
Sir thanks for a nice answer!  BTW Sir, why do you seem very rarely  in the forum-activities nowadays?
Sirthanksforaniceanswer!BTWSir,whydoyouseemveryrarelyintheforumactivitiesnowadays?
Commented by prakash jain last updated on 27/Oct/17
Past few months i was very busy  in my office. So did not get any  time at all.
Pastfewmonthsiwasverybusyinmyoffice.Sodidnotgetanytimeatall.

Leave a Reply

Your email address will not be published. Required fields are marked *