Question Number 155801 by cortano last updated on 05/Oct/21
$$\:\begin{cases}{\mathrm{m}^{\mathrm{2}} =\mathrm{n}+\mathrm{2}}\\{\mathrm{n}^{\mathrm{2}} =\mathrm{m}+\mathrm{2}}\end{cases}\:\Rightarrow\mathrm{m}\neq\mathrm{n} \\ $$$$\:\mathrm{4mn}−\mathrm{m}^{\mathrm{3}} −\mathrm{n}^{\mathrm{3}} =?\: \\ $$
Answered by Rasheed.Sindhi last updated on 05/Oct/21
$$\:\begin{cases}{\mathrm{m}^{\mathrm{2}} =\mathrm{n}+\mathrm{2}…\left({i}\right)}\\{\mathrm{n}^{\mathrm{2}} =\mathrm{m}+\mathrm{2}…\left({ii}\right)}\end{cases}\:\:\wedge\:\:\mathrm{m}\neq\mathrm{n}\:\: \\ $$$$\:\mathrm{4mn}−\mathrm{m}^{\mathrm{3}} −\mathrm{n}^{\mathrm{3}} =?\: \\ $$$$\left({i}\right)−\left({ii}\right):\:{m}^{\mathrm{2}} −{n}^{\mathrm{2}} ={n}−{m} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left({m}−{n}\right)\left({m}+{n}\right)=−\left({m}−{n}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{m}+{n}=−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left({m}+{n}\right)^{\mathrm{3}} =\left(−\mathrm{1}\right)^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:{m}^{\mathrm{3}} +{n}^{\mathrm{3}} +\mathrm{3}{mn}\left({m}+{n}\right)=−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:−{m}^{\mathrm{3}} −{n}^{\mathrm{3}} −\mathrm{3}{mn}\left(−\mathrm{1}\right)=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{3}{mn}−{m}^{\mathrm{3}} −{n}^{\mathrm{3}} =\mathrm{1}…………{A} \\ $$$$\left({i}\right)×\left({ii}\right):\:{m}^{\mathrm{2}} {n}^{\mathrm{2}} ={mn}+\mathrm{2}\left({m}+{n}\right)+\mathrm{4}\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\left({mn}\right)^{\mathrm{2}} −{mn}−\mathrm{2}\left(−\mathrm{1}\right)−\mathrm{4}=\mathrm{0}\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\left({mn}\right)^{\mathrm{2}} −{mn}−\mathrm{2}=\mathrm{0}\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\left({mn}+\mathrm{1}\right)\left({mn}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:{mn}=−\mathrm{1},{mn}=\mathrm{2} \\ $$$${A}\Rightarrow\mathrm{3}{mn}−{m}^{\mathrm{3}} −{n}^{\mathrm{3}} +{mn}=\mathrm{1}+{mn} \\ $$$$\begin{cases}{\mathrm{4}{mn}−{m}^{\mathrm{3}} −{n}^{\mathrm{3}} =\mathrm{1}+\left(−\mathrm{1}\right)=\mathrm{0}}\\{\mathrm{4}{mn}−{m}^{\mathrm{3}} −{n}^{\mathrm{3}} =\mathrm{1}+\left(\mathrm{2}\right)=\mathrm{3}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\: \\ $$
Commented by cortano last updated on 05/Oct/21
$$\mathrm{sorry}\:\mathrm{sir}.\:\mathrm{not}\:\mathrm{correct}. \\ $$$$\mathrm{if}\:\mathrm{4mn}−\mathrm{m}^{\mathrm{3}} −\mathrm{n}^{\mathrm{3}} =\:\mathrm{0}\:\mathrm{it} \\ $$$$\:\mathrm{follows}\:\mathrm{that}\:\mathrm{m}=\mathrm{n}=\mathrm{2}\:. \\ $$
Commented by Rasheed.Sindhi last updated on 05/Oct/21
$$\:\bullet\:\mathrm{4}{mn}−{m}^{\mathrm{3}} −{n}^{\mathrm{3}} =\mathrm{0}\nRightarrow{m}={n}=\mathrm{2} \\ $$$$\:\bullet{What}\:{about}\:{other}\:{answer}: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{4}{mn}−{m}^{\mathrm{3}} −{n}^{\mathrm{3}} =\mathrm{1}+\left(\mathrm{2}\right)=\mathrm{3} \\ $$$${If}\:{it}'{s}\:{also}\:{incorrect},\:{what}'{s}\:{right} \\ $$$${answer}? \\ $$
Commented by mr W last updated on 07/Oct/21
$${cortano}\:{sir}: \\ $$$${both}\:{rasheed}\:{sir}\:{and}\:{i}\:{have}\:{given}\:{a} \\ $$$${detailed}\:{working}\:{for}\:{the}\:{result}\:{zero}. \\ $$$${you}\:{said}\:{this}\:{result}\:{is}\:{wrong},\:{but} \\ $$$${you}\:{can}\:{not}\:{tell}\:{us}\:{where}\:{it}\:{is}\:{wrong} \\ $$$${in}\:{our}\:{working}.\:{i}\:{think}\:{nobody}\:{can}\:{tell}\: \\ $$$${because}\:{both}\:{working}\:{and}\:{result} \\ $$$${are}\:{correct}. \\ $$$${your}\:{answer}\:{that}\:{the}\:{answer}\:{is}\:{not} \\ $$$${zero}\:{is}\:{clearly}\:{wrong}.\:{in}\:{fact}\:{to}\:{get} \\ $$$${the}\:{result}\:{we}\:{don}'{t}\:{need}\:{to}\:{calculate} \\ $$$${the}\:{values}\:{of}\:{m}\:{and}\:{n}.\:{it}'{s}\:{ok}\:{you}\:{did}. \\ $$$${you}\:{got}\:{the}\:{correct}\:{values}\:{for}\:{m},\:{n}: \\ $$$${n},{m}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}\:\checkmark. \\ $$$${but}\:{with}\:{theses}\:{values}\:{you}\:{should}\:{and} \\ $$$${must}\:{get}\:\mathrm{4}{mm}−{m}^{\mathrm{3}} −{n}^{\mathrm{3}} =\mathrm{0}.\:{if}\:{not}, \\ $$$${you}\:{should}\:{buy}\:{a}\:{new}\:{calculator}. \\ $$
Commented by Rasheed.Sindhi last updated on 07/Oct/21
مھرباني منھنجا سائين!
Commented by Rasheed.Sindhi last updated on 07/Oct/21
$${Sir}\:{mr}\:{W}\:,{how}\:{can}\:{we}\:{reject}\:\mathrm{mn}=\mathrm{2} \\ $$$${in}\:{my}\:{above}\:{anwser}? \\ $$
Commented by mr W last updated on 07/Oct/21
$${answer}\:\mathrm{0}\:{is}\:{correct}! \\ $$
Commented by cortano last updated on 07/Oct/21
$$\mathrm{oo}\:\mathrm{yes}\:\mathrm{m}\neq\mathrm{n}\neq\mathrm{2}\:\mathrm{but}\:\mathrm{m}=\mathrm{n}=\frac{\pm\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{then}\:\mathrm{4mn}−\mathrm{m}^{\mathrm{3}} −\mathrm{n}^{\mathrm{3}} =\mathrm{0}. \\ $$$$\mathrm{sorry}\:\mathrm{sir} \\ $$
Commented by Rasheed.Sindhi last updated on 07/Oct/21
$$\mathcal{B}{ut}\:{you}\:{have}\:{given}\:{condition}\:{mr}\:{cortano} \\ $$$${that}\:{m}\neq{n},{then}\:{how}\:\mathrm{m}=\mathrm{n}=\frac{\pm\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\:? \\ $$
Commented by Rasheed.Sindhi last updated on 07/Oct/21
$$\mathrm{m}=\mathrm{n}=\frac{\pm\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}} \\ $$$$\begin{cases}{\mathrm{m}^{\mathrm{2}} =\mathrm{n}+\mathrm{2}\Rightarrow\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \overset{?} {=}\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}+\mathrm{2}}\\{\mathrm{n}^{\mathrm{2}} =\mathrm{m}+\mathrm{2}\Rightarrow\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \overset{?} {=}\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}+\mathrm{2}}\end{cases}\: \\ $$$$\begin{cases}{\mathrm{m}^{\mathrm{2}} =\mathrm{n}+\mathrm{2}\Rightarrow\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \overset{?} {=}\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}+\mathrm{2}}\\{\mathrm{n}^{\mathrm{2}} =\mathrm{m}+\mathrm{2}\Rightarrow\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \overset{?} {=}\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}+\mathrm{2}}\end{cases}\: \\ $$$$\frac{\mathrm{5}+\mathrm{1}−\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{4}}\overset{?} {=}\frac{\sqrt{\mathrm{5}}−\mathrm{1}+\mathrm{4}}{\mathrm{2}} \\ $$$$\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}}\neq\frac{\sqrt{\mathrm{5}}+\mathrm{3}}{\mathrm{2}} \\ $$$${Don}'{t}\:{satisfied}\:{by}\:{m}={n}=\frac{\pm\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mr W last updated on 07/Oct/21
$${rasheed}\:{sir}: \\ $$$${with}\:{m}+{n}=−\mathrm{1} \\ $$$${m}=−\left({n}+\mathrm{1}\right) \\ $$$${P}={mn}=−\left(\mathrm{1}+{n}\right){n}=\frac{\mathrm{1}}{\mathrm{4}}−\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \leqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${therefore}\:{mn}=\mathrm{2}>\frac{\mathrm{1}}{\mathrm{4}}\:{must}\:{be}\:{rejected}. \\ $$
Commented by cortano last updated on 07/Oct/21
Commented by cortano last updated on 07/Oct/21
$$\mathrm{clear}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{not}\:\mathrm{zero} \\ $$
Commented by Rasheed.Sindhi last updated on 07/Oct/21
$$\mathcal{THANKS}-{a}-{lot}\:\:\mathcal{S}{ir}\:{mr}\:\mathcal{W}! \\ $$
Commented by cortano last updated on 07/Oct/21
$$\mathrm{the}\:\mathrm{correct}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{9}+\sqrt{\mathrm{5}} \\ $$$$\mathrm{not}\:\mathrm{zero}.\:\mathrm{if}\:\mathrm{4mn}−\mathrm{m}^{\mathrm{3}} −\mathrm{n}^{\mathrm{3}} =\mathrm{0} \\ $$$$\mathrm{it}\:\mathrm{follows}\:\mathrm{that}\:\mathrm{m}=\mathrm{n}=\mathrm{2}. \\ $$$$\mathrm{my}\:\mathrm{solution}\:\begin{cases}{\mathrm{m}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}}\\{\mathrm{n}=\frac{−\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$$$ \\ $$
Commented by mr W last updated on 07/Oct/21
$${why}\:{don}'{t}\:{you}\:{calculate}\:\mathrm{4}{mn}−{m}^{\mathrm{3}} −{n}^{\mathrm{3}} \\ $$$${simply}\:{with}\:{your}\:{values}: \\ $$$$\begin{cases}{\mathrm{m}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}}\\{\mathrm{n}=\frac{−\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$$$ \\ $$$${here}\:{i}\:{check}\:{for}\:{you}: \\ $$$$\mathrm{4}{mn}=\mathrm{4}×\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}×\frac{−\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}} \\ $$$$=−\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)\left(\sqrt{\mathrm{5}}+\mathrm{1}\right) \\ $$$$=−\left[\left(\sqrt{\mathrm{5}}\right)^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} \right] \\ $$$$=−\left(\mathrm{5}−\mathrm{1}\right) \\ $$$$=−\left(\mathrm{4}\right) \\ $$$$=−\mathrm{4} \\ $$$$\neq\mathrm{5}+\sqrt{\mathrm{5}} \\ $$$$ \\ $$$${besides}\:\mathrm{4}{mn}−{m}^{\mathrm{3}} −{n}^{\mathrm{3}} =\mathrm{0}\:{doesn}'{t} \\ $$$${lead}\:{to}\:{m}={n}=\mathrm{2}\:{only}!\:{in}\:{fact} \\ $$$$\mathrm{4}{mn}−{m}^{\mathrm{3}} −{n}^{\mathrm{3}} =\mathrm{0}\:{has}\:{infinite} \\ $$$${solutions}.\:{m}={n}=\mathrm{2}\:{is}\:{only}\:{one}\:{of} \\ $$$${infinite}\:{many}! \\ $$$$ \\ $$$$\left[{edited}\right] \\ $$
Answered by john_santu last updated on 07/Oct/21
$$\left(\mathrm{1}\right){m}^{\mathrm{2}} +{n}^{\mathrm{2}} ={m}+{n}+\mathrm{4} \\ $$$$\left(\mathrm{2}\right){m}^{\mathrm{3}} +{n}^{\mathrm{3}} =\left({m}+{n}\right)\left({m}^{\mathrm{2}} +{n}^{\mathrm{2}} −{mn}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\left({m}+{n}\right)\left({m}+{n}−{mn}+\mathrm{4}\right) \\ $$$$\left(\mathrm{3}\right)\left({m}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} ={m}+\mathrm{2} \\ $$$$\Rightarrow{m}^{\mathrm{4}} −\mathrm{4}{m}^{\mathrm{2}} −{m}+\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\left({m}+\mathrm{1}\right)\left({m}−\mathrm{2}\right)\left({m}^{\mathrm{2}} +{m}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\:{m}=−\mathrm{1}\:\wedge{m}=\mathrm{2}\:{rejected}\:{since}\:{m}\neq{n} \\ $$$$\Rightarrow{m}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}\:\wedge{n}=\frac{\mp\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{2}}{\mathrm{4}} \\ $$$$ \\ $$
Commented by cortano last updated on 05/Oct/21
$$\mathrm{thanks} \\ $$
Answered by mr W last updated on 07/Oct/21
$${m}^{\mathrm{2}} −{n}^{\mathrm{2}} ={n}−{m} \\ $$$$\left({m}+{n}\right)\left({m}−{n}\right)={n}−{m} \\ $$$$\Rightarrow{m}+{n}=−\mathrm{1} \\ $$$${m}^{\mathrm{2}} +{n}^{\mathrm{2}} ={m}+{n}+\mathrm{4} \\ $$$$\left({m}+{n}\right)^{\mathrm{2}} −\mathrm{2}{mn}={m}+{n}+\mathrm{4} \\ $$$$\mathrm{1}−\mathrm{2}{mn}=−\mathrm{1}+\mathrm{4} \\ $$$$\Rightarrow{mn}=−\mathrm{1} \\ $$$$\left\{\right. \\ $$$${m},{n}\:{are}\:{roots}\:{of}\:{z}^{\mathrm{2}} +{z}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{m},{n}={z}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\:\:\:\: \\ $$$$\left.\right\} \\ $$$$\left({m}+{n}\right)^{\mathrm{3}} ={m}^{\mathrm{3}} +{n}^{\mathrm{3}} +\mathrm{3}{mn}\left({m}+{n}\right) \\ $$$$\left(−\mathrm{1}\right)^{\mathrm{3}} ={m}^{\mathrm{3}} +{n}^{\mathrm{3}} +\mathrm{3}\left(−\mathrm{1}\right)\left(−\mathrm{1}\right) \\ $$$$\Rightarrow{m}^{\mathrm{3}} +{n}^{\mathrm{3}} =−\mathrm{4} \\ $$$$ \\ $$$$\mathrm{4}{mn}−{m}^{\mathrm{3}} −{n}^{\mathrm{3}} =\mathrm{4}\left(−\mathrm{1}\right)−\left(−\mathrm{4}\right)=\mathrm{0} \\ $$