Menu Close

m-4-2m-3-6m-2-2m-5-0-find-all-roots-of-m-




Question Number 110810 by mohammad17 last updated on 30/Aug/20
m^4 +2m^3 +6m^2 +2m+5=0  find all roots of m?
$${m}^{\mathrm{4}} +\mathrm{2}{m}^{\mathrm{3}} +\mathrm{6}{m}^{\mathrm{2}} +\mathrm{2}{m}+\mathrm{5}=\mathrm{0} \\ $$$${find}\:{all}\:{roots}\:{of}\:{m}? \\ $$
Commented by mohammad17 last updated on 30/Aug/20
sir can you exactly the solution steb by steb
$${sir}\:{can}\:{you}\:{exactly}\:{the}\:{solution}\:{steb}\:{by}\:{steb} \\ $$
Answered by malwan last updated on 31/Aug/20
(m^4 +2m^3 +5m^2 )+(m^2 +2m+5)=0  m^2 (m^2 +2m+5)+(m^2 +2m+5)=0  (m^2 +1)(m^2 +2m+5)=0  m^2 +1=0⇒m=±i  or m^2 +2m+5=0⇒m=−1±2i
$$\left({m}^{\mathrm{4}} +\mathrm{2}{m}^{\mathrm{3}} +\mathrm{5}{m}^{\mathrm{2}} \right)+\left({m}^{\mathrm{2}} +\mathrm{2}{m}+\mathrm{5}\right)=\mathrm{0} \\ $$$${m}^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{2}{m}+\mathrm{5}\right)+\left({m}^{\mathrm{2}} +\mathrm{2}{m}+\mathrm{5}\right)=\mathrm{0} \\ $$$$\left({m}^{\mathrm{2}} +\mathrm{1}\right)\left({m}^{\mathrm{2}} +\mathrm{2}{m}+\mathrm{5}\right)=\mathrm{0} \\ $$$${m}^{\mathrm{2}} +\mathrm{1}=\mathrm{0}\Rightarrow{m}=\pm{i} \\ $$$${or}\:{m}^{\mathrm{2}} +\mathrm{2}{m}+\mathrm{5}=\mathrm{0}\Rightarrow{m}=−\mathrm{1}\pm\mathrm{2}{i} \\ $$
Commented by mohammad17 last updated on 31/Aug/20
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Commented by malwan last updated on 31/Aug/20
you welcome
$${you}\:{welcome} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *