Menu Close

M-N-are-endpoints-of-a-diameter-4x-y-15-of-circle-x-2-y-2-6x-6y-16-0-and-are-also-on-the-tangents-at-the-end-points-of-the-major-axis-of-an-ellipse-respectively-such-that-MN-is-also-tangent-to




Question Number 28185 by ajfour last updated on 21/Jan/18
M, N are endpoints of a diameter   4x−y=15  of circle  x^2 +y^2 −6x+6y−16=0 ; and are  also on the tangents at the end  points of the major axis of an  ellipse respectively, such that  MN is also tangent to the same  ellipse at point P.  If the major axis of the ellipse  is along y=x, find     eccentricity, length of latus  rectum, centre and equation of  derectrices.
M,Nareendpointsofadiameter4xy=15ofcirclex2+y26x+6y16=0;andarealsoonthetangentsattheendpointsofthemajoraxisofanellipserespectively,suchthatMNisalsotangenttothesameellipseatpointP.Ifthemajoraxisoftheellipseisalongy=x,findeccentricity,lengthoflatusrectum,centreandequationofderectrices.
Answered by mrW2 last updated on 22/Jan/18
Commented by mrW2 last updated on 22/Jan/18
circle:  x^2 +y^2 −6x+6y−16=0  ⇔(x−3)^2 +(y+3)^2 =34  center C(3,−3), radius R=(√(34))    line:  4x−y=15  ⇔y=4x−15  4×3−(−3)=15  ⇒line passes through C.    intersection of circle and line:  (x−3)^2 +(4x−15+3)^2 =34  17(x−3)^2 =34  x−3=±(√2)  ⇒x=3±(√2)  ⇒y=12±4(√2)−15=−3±4(√2)  M(3−(√2),−3−4(√2)), N(3+(√2),−3+4(√2))    distance from N to line y=x (i.e. x−y=0):  d_N =((3+(√2)−(−3+4(√2)))/( (√(1^2 +(−1)^2 ))))=((6−3(√2))/( (√2)))=3((√2)−1)    point G with MG⊥line y=x:  x_G =x_M +λ  y_G =y_M −λ  ⇒y_M −λ=x_M +λ  ⇒λ=((y_M −x_M )/2)  ⇒x_G =x_M +((y_M −x_M )/2)=((x_M +y_M )/2)=((3−(√2)−3−4(√2))/2)=−((5(√2))/2)  ⇒y_G =x_G =−((5(√2))/2)    Eqn. of ellipse:  the ellipse is following ellipse after   a rotation of (π/4):  (((x−k)^2 )/a^2 )+(y^2 /b^2 )=1  where b=d_N =3((√2)−1)  Eqn. after rotation of (π/4):  (((((x+y)/( (√2)))−k)^2 )/a^2 )+(((((−x+y)/( (√2))))^2 )/b^2 )=1  (((x+y−(√2) k)^2 )/a^2 )+(((−x+y)^2 )/b^2 )=2    Point G is on the ellipse,  (((−5(√2)−(√2) k)^2 )/a^2 )=2  (((5+k)^2 )/a^2 )=1  ⇒k=a−5    Line y=4x−15 is tangent of ellipse:  (((x+4x−15−(√2) k)^2 )/a^2 )+(((−x+4x−15)^2 )/b^2 )=2  (((5x−15−(√2) k)^2 )/a^2 )+(((3x−15)^2 )/b^2 )=2  b^2 (5x−15−(√2)k)^2 +a^2 (3x−15)^2 =2a^2 b^2   b^2 [25x^2 −10(15+(√2)k)x+(15+(√2)k)^2 ]+a^2 [9x^2 −90x+225]=2a^2 b^2   (25b^2 +9a^2 )x^2 −10[(15+(√2)k)b^2 +9a^2 ]x+[(15+(√2)k)^2 b^2 +(225−2b^2 )a^2 ]=0    for a tangent there is only one intersection point,  Δ=100[(15+(√2)k)b^2 +9a^2 ]^2 −4(25b^2 +9a^2 )[(15+(√2)k)^2 b^2 +(225−2b^2 )a^2 ]=0  k=a−5  b^2 =9(3−2(√2))  ⇒25[9(3−2(√2)){15+(√2)(a−5)}+9a^2 ]^2 −[225(3−2(√2))+9a^2 ][9(3−2(√2)){15+(√2) (a−5)}^2 +(171+36(√2))a^2 ]=0  ⇒((√2)−1)a^3 −10(3(√2) −4)a^2 =0  ⇒a=((10(3(√2)−4))/( (√2)−1))=10(2−(√2))≈5.86  b=3((√2)−1)≈1.24  (b/a)=((3((√2)−1))/(10(2−(√2))))=((3(√2))/(20))  eccentricity=(c/a)=((√(a^2 −b^2 ))/a)=(√(1−((b/a))^2 ))=(√(1−(9/(200))))≈0.977  length of latus rectum =((2b^2 )/a)=((18(3−2(√2)))/(10(2−(√2))))=((18−9(√2))/(10))    k=a−5=5(3−2(√2))≈0.86  (√2)k=5(3(√2)−4)  therefore the eqn. of ellipse (before  rotation) is  (([x−5(3−2(√2))]^2 )/(200(3−2(√2))))+(y^2 /(9(3−2(√2))))=1  center of ellipse is (k,0)=(5(3−2(√2)),0)    the eqn. of the searched ellipse is  (([x+y−5(3(√2)−4)]^2 )/(200))+(((y−x)^2 )/9)=2(3−2(√2))  center of ellipse is ((k/( (√2))),(k/( (√2))))=(((5(3(√2)−4))/2),((5(3(√2)−4))/2))
circle:x2+y26x+6y16=0(x3)2+(y+3)2=34centerC(3,3),radiusR=34line:4xy=15y=4x154×3(3)=15linepassesthroughC.intersectionofcircleandline:(x3)2+(4x15+3)2=3417(x3)2=34x3=±2x=3±2y=12±4215=3±42M(32,342),N(3+2,3+42)distancefromNtoliney=x(i.e.xy=0):dN=3+2(3+42)12+(1)2=6322=3(21)pointGwithMGliney=x:xG=xM+λyG=yMλyMλ=xM+λλ=yMxM2xG=xM+yMxM2=xM+yM2=323422=522yG=xG=522Eqn.ofellipse:theellipseisfollowingellipseafterarotationofπ4:(xk)2a2+y2b2=1whereb=dN=3(21)Eqn.afterrotationofπ4:(x+y2k)2a2+(x+y2)2b2=1(x+y2k)2a2+(x+y)2b2=2PointGisontheellipse,(522k)2a2=2(5+k)2a2=1k=a5Liney=4x15istangentofellipse:(x+4x152k)2a2+(x+4x15)2b2=2(5x152k)2a2+(3x15)2b2=2b2(5x152k)2+a2(3x15)2=2a2b2b2[25x210(15+2k)x+(15+2k)2]+a2[9x290x+225]=2a2b2(25b2+9a2)x210[(15+2k)b2+9a2]x+[(15+2k)2b2+(2252b2)a2]=0foratangentthereisonlyoneintersectionpoint,Δ=100[(15+2k)b2+9a2]24(25b2+9a2)[(15+2k)2b2+(2252b2)a2]=0k=a5b2=9(322)25[9(322){15+2(a5)}+9a2]2[225(322)+9a2][9(322){15+2(a5)}2+(171+362)a2]=0(21)a310(324)a2=0a=10(324)21=10(22)5.86b=3(21)1.24ba=3(21)10(22)=3220eccentricity=ca=a2b2a=1(ba)2=192000.977lengthoflatusrectum=2b2a=18(322)10(22)=189210k=a5=5(322)0.862k=5(324)thereforetheeqn.ofellipse(beforerotation)is[x5(322)]2200(322)+y29(322)=1centerofellipseis(k,0)=(5(322),0)theeqn.ofthesearchedellipseis[x+y5(324)]2200+(yx)29=2(322)centerofellipseis(k2,k2)=(5(324)2,5(324)2)
Commented by mrW2 last updated on 22/Jan/18

Leave a Reply

Your email address will not be published. Required fields are marked *