M-N-are-endpoints-of-a-diameter-4x-y-15-of-circle-x-2-y-2-6x-6y-16-0-and-are-also-on-the-tangents-at-the-end-points-of-the-major-axis-of-an-ellipse-respectively-such-that-MN-is-also-tangent-to Tinku Tara June 4, 2023 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 28185 by ajfour last updated on 21/Jan/18 M,Nareendpointsofadiameter4x−y=15ofcirclex2+y2−6x+6y−16=0;andarealsoonthetangentsattheendpointsofthemajoraxisofanellipserespectively,suchthatMNisalsotangenttothesameellipseatpointP.Ifthemajoraxisoftheellipseisalongy=x,findeccentricity,lengthoflatusrectum,centreandequationofderectrices. Answered by mrW2 last updated on 22/Jan/18 Commented by mrW2 last updated on 22/Jan/18 circle:x2+y2−6x+6y−16=0⇔(x−3)2+(y+3)2=34centerC(3,−3),radiusR=34line:4x−y=15⇔y=4x−154×3−(−3)=15⇒linepassesthroughC.intersectionofcircleandline:(x−3)2+(4x−15+3)2=3417(x−3)2=34x−3=±2⇒x=3±2⇒y=12±42−15=−3±42M(3−2,−3−42),N(3+2,−3+42)distancefromNtoliney=x(i.e.x−y=0):dN=3+2−(−3+42)12+(−1)2=6−322=3(2−1)pointGwithMG⊥liney=x:xG=xM+λyG=yM−λ⇒yM−λ=xM+λ⇒λ=yM−xM2⇒xG=xM+yM−xM2=xM+yM2=3−2−3−422=−522⇒yG=xG=−522Eqn.ofellipse:theellipseisfollowingellipseafterarotationofπ4:(x−k)2a2+y2b2=1whereb=dN=3(2−1)Eqn.afterrotationofπ4:(x+y2−k)2a2+(−x+y2)2b2=1(x+y−2k)2a2+(−x+y)2b2=2PointGisontheellipse,(−52−2k)2a2=2(5+k)2a2=1⇒k=a−5Liney=4x−15istangentofellipse:(x+4x−15−2k)2a2+(−x+4x−15)2b2=2(5x−15−2k)2a2+(3x−15)2b2=2b2(5x−15−2k)2+a2(3x−15)2=2a2b2b2[25x2−10(15+2k)x+(15+2k)2]+a2[9x2−90x+225]=2a2b2(25b2+9a2)x2−10[(15+2k)b2+9a2]x+[(15+2k)2b2+(225−2b2)a2]=0foratangentthereisonlyoneintersectionpoint,Δ=100[(15+2k)b2+9a2]2−4(25b2+9a2)[(15+2k)2b2+(225−2b2)a2]=0k=a−5b2=9(3−22)⇒25[9(3−22){15+2(a−5)}+9a2]2−[225(3−22)+9a2][9(3−22){15+2(a−5)}2+(171+362)a2]=0⇒(2−1)a3−10(32−4)a2=0⇒a=10(32−4)2−1=10(2−2)≈5.86b=3(2−1)≈1.24ba=3(2−1)10(2−2)=3220eccentricity=ca=a2−b2a=1−(ba)2=1−9200≈0.977lengthoflatusrectum=2b2a=18(3−22)10(2−2)=18−9210k=a−5=5(3−22)≈0.862k=5(32−4)thereforetheeqn.ofellipse(beforerotation)is[x−5(3−22)]2200(3−22)+y29(3−22)=1centerofellipseis(k,0)=(5(3−22),0)theeqn.ofthesearchedellipseis[x+y−5(32−4)]2200+(y−x)29=2(3−22)centerofellipseis(k2,k2)=(5(32−4)2,5(32−4)2) Commented by mrW2 last updated on 22/Jan/18 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-93717Next Next post: Find-the-number-of-positive-integers-x-such-that-x-m-1-x-m-1-for-a-particular-integer-m-2-means-G-I-F- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.