Menu Close

Make-r-the-subject-of-the-formular-S-a-r-n-1-r-1-




Question Number 62942 by Tawa1 last updated on 27/Jun/19
Make  r  the subject of the formular:             S  =  ((a(r^n  − 1))/(r − 1))
Makerthesubjectoftheformular:S=a(rn1)r1
Commented by Tawa1 last updated on 27/Jun/19
Sir,  help me solve this           Find the value of   x:             5^x  + 6x  =  7
Sir,helpmesolvethisFindthevalueofx:5x+6x=7
Commented by Tawa1 last updated on 27/Jun/19
Sir mrW can we use Lanbert function ?  Or anybody help.
SirmrWcanweuseLanbertfunction?Oranybodyhelp.
Commented by mr W last updated on 27/Jun/19
no
no
Commented by Tawa1 last updated on 27/Jun/19
Thank you sir. God bless you
Thankyousir.Godblessyou
Commented by mr W last updated on 27/Jun/19
5^x +6x=7  5^x =6((7/6)−x)  ((7/6)−x)5^(−x) =(1/6)  ((7/6)−x)5^((7/6)−x) =(1/6)×5^(7/6)   ((7/6)−x)e^(((7/6)−x)ln 5) =(1/6)×5^(7/6)   [((7/6)−x)ln 5]e^(((7/6)−x)ln 5) =(1/6)×5^(7/6) ×ln 5  ⇒((7/6)−x)ln 5=W((1/6)×5^(7/6) ×ln 5)  ⇒x=(7/6)−(1/(ln 5))W((1/6)×5^(7/6) ×ln 5)  ⇒≈(7/6)−((0.7933)/(ln 5))=0.6737
5x+6x=75x=6(76x)(76x)5x=16(76x)576x=16×576(76x)e(76x)ln5=16×576[(76x)ln5]e(76x)ln5=16×576×ln5(76x)ln5=W(16×576×ln5)x=761ln5W(16×576×ln5)⇒≈760.7933ln5=0.6737
Commented by kaivan.ahmadi last updated on 27/Jun/19
5^x =7−6x  if we plote y_1 =5^x  and y_2 =7−6x then we see that  they cut off each othere at one point,this  means that this equation has one root.  now if  f(x)=5^x +6x−7=0     {: ((f(0)<0)),((f(1)>0)) }⇒f(0)f(1)<0  f((1/2))<0  so the root is between ((1/2),1)  f((3/4))>0  so the root is between ((1/2),(3/4))
5x=76xifweplotey1=5xandy2=76xthenweseethattheycutoffeachothereatonepoint,thismeansthatthisequationhasoneroot.nowiff(x)=5x+6x7=0f(0)<0f(1)>0}f(0)f(1)<0f(12)<0sotherootisbetween(12,1)f(34)>0sotherootisbetween(12,34)
Commented by Hope last updated on 27/Jun/19
f(x)=5^x +6x−7  f(0)<0  f(1)=5^1 +6−7>0  f(0.5)=5^(0.5) +6×0.5−7      =2.23+3−7<0  f(0.6)=5^(0.6) +6×0.6−7  =2.63+3.6−7<0  f(0.7)=5^(0.7) +6×0.7−7     =3.09+4.2−7>0  so value of x    0.7>x>0.6
f(x)=5x+6x7f(0)<0f(1)=51+67>0f(0.5)=50.5+6×0.57=2.23+37<0f(0.6)=50.6+6×0.67=2.63+3.67<0f(0.7)=50.7+6×0.77=3.09+4.27>0sovalueofx0.7>x>0.6
Commented by Tawa1 last updated on 27/Jun/19
Wow, God bless you sir
Wow,Godblessyousir
Commented by Tawa1 last updated on 27/Jun/19
God bless you sir
Godblessyousir
Commented by Tawa1 last updated on 27/Jun/19
God bless you sir
Godblessyousir
Answered by peter frank last updated on 27/Jun/19
Sr−S=ar^n −a  Sr−ar^n =S−a  ..........
SrS=arnaSrarn=Sa.
Commented by Tawa1 last updated on 27/Jun/19
How to find  r  sir
Howtofindrsir

Leave a Reply

Your email address will not be published. Required fields are marked *