Menu Close

many-positive-five-digit-integers-with-the-first-number-1-and-there-are-three-equal-numbers-a-810-b-720-c-120-d-60-e-20-




Question Number 103300 by bramlex last updated on 14/Jul/20
many positive five−digit  integers with the first number 1  and there are three equal  numbers ?  (a) 810    (b) 720    (c)120  (d) 60     (e) 20
$$\mathrm{many}\:\mathrm{positive}\:\mathrm{five}−\mathrm{digit} \\ $$$$\mathrm{integers}\:\mathrm{with}\:\mathrm{the}\:\mathrm{first}\:\mathrm{number}\:\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{there}\:\mathrm{are}\:\mathrm{three}\:\mathrm{equal} \\ $$$$\mathrm{numbers}\:? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{810}\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{720}\:\:\:\:\left(\mathrm{c}\right)\mathrm{120} \\ $$$$\left(\mathrm{d}\right)\:\mathrm{60}\:\:\:\:\:\left(\mathrm{e}\right)\:\mathrm{20} \\ $$
Answered by bemath last updated on 14/Jul/20
case(1) 1_11xx =9×((4!)/(2!.2!)) = 54   case(2)1_11xy = C_2 ^9 ×((4!)/(2!)) = 432  case(3)1_xxxy = 9×8×((4!)/(3!)) = 288  case(4)1_1xxx= 9×((4!)/(3!))=36  totally = 54+432+288+36 = 810
$${case}\left(\mathrm{1}\right)\:\mathrm{1\_11}{xx}\:=\mathrm{9}×\frac{\mathrm{4}!}{\mathrm{2}!.\mathrm{2}!}\:=\:\mathrm{54}\: \\ $$$${case}\left(\mathrm{2}\right)\mathrm{1\_11}{xy}\:=\:{C}_{\mathrm{2}} ^{\mathrm{9}} ×\frac{\mathrm{4}!}{\mathrm{2}!}\:=\:\mathrm{432} \\ $$$${case}\left(\mathrm{3}\right)\mathrm{1\_}{xxxy}\:=\:\mathrm{9}×\mathrm{8}×\frac{\mathrm{4}!}{\mathrm{3}!}\:=\:\mathrm{288} \\ $$$${case}\left(\mathrm{4}\right)\mathrm{1\_1}{xxx}=\:\mathrm{9}×\frac{\mathrm{4}!}{\mathrm{3}!}=\mathrm{36} \\ $$$${totally}\:=\:\mathrm{54}+\mathrm{432}+\mathrm{288}+\mathrm{36}\:=\:\mathrm{810} \\ $$
Commented by bemath last updated on 14/Jul/20
thank you
$${thank}\:{you}\: \\ $$
Commented by john santu last updated on 14/Jul/20
correction   case(3) 1_xxxy = 9×8×((4!)/(3!)) =  288 .  totally = 54+432+288+36  =810. (answer A) (JS ⊛)
$${correction}\: \\ $$$${case}\left(\mathrm{3}\right)\:\mathrm{1\_}{xxxy}\:=\:\mathrm{9}×\mathrm{8}×\frac{\mathrm{4}!}{\mathrm{3}!}\:= \\ $$$$\mathrm{288}\:. \\ $$$${totally}\:=\:\mathrm{54}+\mathrm{432}+\mathrm{288}+\mathrm{36} \\ $$$$=\mathrm{810}.\:\left({answer}\:{A}\right)\:\left({JS}\:\circledast\right)\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *