Menu Close

math-lim-x-pi-sin-2-x-cos-3x-1-




Question Number 109728 by bemath last updated on 25/Aug/20
   △((♭ε)/(math))▽  lim_(x→π)  ((sin^2 x)/(cos 3x+1))
ϵmathlimxπsin2xcos3x+1
Commented by bemath last updated on 25/Aug/20
thank you all master
thankyouallmaster
Answered by Her_Majesty last updated on 25/Aug/20
=−lim_(x→π) ((2sinxcosx)/(3sin3x))  =lim_(x→π) ((2−4cos^2 x)/(9cos3x))  =(2/9)
=limxπ2sinxcosx3sin3x=limxπ24cos2x9cos3x=29
Answered by bobhans last updated on 25/Aug/20
Answered by 1549442205PVT last updated on 25/Aug/20
Put π−t=x  we have sinx=sint  cos3x=cos(3π−3t)=cos(π−3t)=−cos3t.Hence  lim _(x→π) ((sin^2 x)/(cos 3x+1))=lim_(t→0) ((sin^2 t)/(−cos3t+1))=  =    _(L′Hopital)   lim_(t→0) ((2sintcost)/(3sin3t))=lim_(t→0) ((2sintcost)/(3(3sint−4sin^3 t)))  =lim_(t→0) ((2cost)/(3(3−4sin^2 t)))=((2.1)/(3(3−4.0)))=(2/9)
Putπt=xwehavesinx=sintcos3x=cos(3π3t)=cos(π3t)=cos3t.Hencelimxπsin2xcos3x+1=limt0sin2tcos3t+1==LHopitallimt02sintcost3sin3t=limt02sintcost3(3sint4sin3t)=limt02cost3(34sin2t)=2.13(34.0)=29
Answered by mathmax by abdo last updated on 25/Aug/20
let f(x) =((sin^2 x)/(1+cos(3x)))  changement x =t+π give  f(x) =((sin^2 t)/(1+cos(3t+π))) =((sin^2 t)/(1−cos(3t))) =g(t)  (t→0)  cos(3t) ∼1−((9t^2 )/2) ⇒1−cos(3t)∼((9t^2 )/2)  and sin^2 t ∼ t^2  ⇒  g(t) ∼(2/9) ⇒lim_(x→π) f(x) =(2/9)
letf(x)=sin2x1+cos(3x)changementx=t+πgivef(x)=sin2t1+cos(3t+π)=sin2t1cos(3t)=g(t)(t0)cos(3t)19t221cos(3t)9t22andsin2tt2g(t)29limxπf(x)=29

Leave a Reply

Your email address will not be published. Required fields are marked *