Menu Close

mathematical-analysis-suppose-X-1-1-and-X-2-2-are-two-topological-spaces-prove-f-X-1-1-X-2-2-is-a-continuous-function-if-only-if-for-any-subset-A-X-1-




Question Number 123794 by mnjuly1970 last updated on 28/Nov/20
           ...mathematical  analysis...   suppose  (X_1 ,τ_1 ) and (X_2 ,τ_2 )   are two topological spaces.  prove  f:(X_1 ,τ_1 )→(X_2 ,τ_2 ) is   a continuous function if only  if  for any subset A⊆X_1  :         f(cl(A))⊆cl(f(A))
$$\:\:\:\:\:\:\:\:\:\:\:…{mathematical}\:\:{analysis}… \\ $$$$\:{suppose}\:\:\left({X}_{\mathrm{1}} ,\tau_{\mathrm{1}} \right)\:{and}\:\left({X}_{\mathrm{2}} ,\tau_{\mathrm{2}} \right) \\ $$$$\:{are}\:{two}\:{topological}\:{spaces}. \\ $$$${prove}\:\:{f}:\left({X}_{\mathrm{1}} ,\tau_{\mathrm{1}} \right)\rightarrow\left({X}_{\mathrm{2}} ,\tau_{\mathrm{2}} \right)\:{is}\: \\ $$$${a}\:{continuous}\:{function}\:{if}\:{only} \\ $$$${if}\:\:{for}\:{any}\:{subset}\:{A}\subseteq{X}_{\mathrm{1}} \:: \\ $$$$\:\:\:\:\:\:\:{f}\left({cl}\left({A}\right)\right)\subseteq{cl}\left({f}\left({A}\right)\right) \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *