Question Number 172253 by cortano1 last updated on 25/Jun/22
$$\:\:{Max}\:{and}\:{min}\:{P}=\sqrt{\mathrm{2}}\:{x}+\:\sqrt{\mathrm{3}}\:{y} \\ $$$${subject}\:{to}\:{constraint}\: \\ $$$$\:\frac{{x}^{\mathrm{2}} }{\mathrm{9}}\:+\frac{{y}^{\mathrm{2}} }{\mathrm{25}}\:\leqslant\:\mathrm{1}\:\leqslant\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$
Answered by mr W last updated on 25/Jun/22
$${Method}\:{I} \\ $$$${y}=\frac{{P}−\sqrt{\mathrm{2}}{x}}{\:\sqrt{\mathrm{3}}} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{9}}+\frac{\mathrm{1}}{\mathrm{25}}\left(\frac{{P}−\sqrt{\mathrm{2}}{x}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{25}{x}^{\mathrm{2}} +\mathrm{3}\left({P}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}{Px}+\mathrm{2}{x}^{\mathrm{2}} \right)=\mathrm{9}×\mathrm{25} \\ $$$$\mathrm{31}{x}^{\mathrm{2}} −\mathrm{6}\sqrt{\mathrm{2}}{Px}+\mathrm{3}{P}^{\mathrm{2}} −\mathrm{225}=\mathrm{0} \\ $$$$\Delta=\mathrm{36}×\mathrm{2}{P}^{\mathrm{2}} −\mathrm{4}×\mathrm{31}\left(\mathrm{3}{P}^{\mathrm{2}} −\mathrm{225}\right)=\mathrm{0} \\ $$$${P}^{\mathrm{2}} =\mathrm{93} \\ $$$${P}=\pm\sqrt{\mathrm{93}} \\ $$$$\Rightarrow{P}_{{max}} =\sqrt{\mathrm{93}} \\ $$$$\Rightarrow{P}_{{min}} =−\sqrt{\mathrm{93}} \\ $$
Commented by mr W last updated on 25/Jun/22
Commented by Tawa11 last updated on 25/Jun/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by mr W last updated on 25/Jun/22
$${Method}\:{II} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{3}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{5}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow{x}=\mathrm{3}\:\mathrm{cos}\:\theta,\:{y}=\mathrm{5}\:\mathrm{sin}\:\theta \\ $$$${P}=\sqrt{\mathrm{2}}{x}+\sqrt{\mathrm{3}}{y}=\mathrm{3}\sqrt{\mathrm{2}}\:\mathrm{cos}\:\theta+\mathrm{5}\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta \\ $$$${P}=\sqrt{\left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{5}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \:}\left(\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\:\sqrt{\left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{5}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \:}}\mathrm{cos}\:\theta+\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\:\sqrt{\left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{5}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \:}}\:\mathrm{sin}\:\theta\right) \\ $$$${P}=\sqrt{\mathrm{93}}\:\left(\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{93}\:}}\mathrm{cos}\:\theta+\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{93}\:}}\:\mathrm{sin}\:\theta\right) \\ $$$${P}=\sqrt{\mathrm{93}}\:\mathrm{sin}\:\left(\theta+\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{5}\sqrt{\mathrm{3}}}\right) \\ $$$$\Rightarrow{P}_{{max}} =\sqrt{\mathrm{93}}\:\:{at}\:\theta=\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{5}\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow{P}_{{min}} =−\sqrt{\mathrm{93}}\:\:{at}\:\theta=−\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{5}\sqrt{\mathrm{3}}} \\ $$
Commented by mr W last updated on 25/Jun/22