Menu Close

Max-and-min-P-2-x-3-y-subject-to-constraint-x-2-9-y-2-25-1-x-2-y-2-




Question Number 172253 by cortano1 last updated on 25/Jun/22
  Max and min P=(√2) x+ (√3) y  subject to constraint    (x^2 /9) +(y^2 /(25)) ≤ 1 ≤ x^2 +y^2
MaxandminP=2x+3ysubjecttoconstraintx29+y2251x2+y2
Answered by mr W last updated on 25/Jun/22
Method I  y=((P−(√2)x)/( (√3)))  (x^2 /9)+(1/(25))(((P−(√2)x)/( (√3))))^2 =1  25x^2 +3(P^2 −2(√2)Px+2x^2 )=9×25  31x^2 −6(√2)Px+3P^2 −225=0  Δ=36×2P^2 −4×31(3P^2 −225)=0  P^2 =93  P=±(√(93))  ⇒P_(max) =(√(93))  ⇒P_(min) =−(√(93))
MethodIy=P2x3x29+125(P2x3)2=125x2+3(P222Px+2x2)=9×2531x262Px+3P2225=0Δ=36×2P24×31(3P2225)=0P2=93P=±93Pmax=93Pmin=93
Commented by mr W last updated on 25/Jun/22
Commented by Tawa11 last updated on 25/Jun/22
Great sir
Greatsir
Answered by mr W last updated on 25/Jun/22
Method II  (x^2 /3^2 )+(y^2 /5^2 )=1  ⇒x=3 cos θ, y=5 sin θ  P=(√2)x+(√3)y=3(√2) cos θ+5(√3) sin θ  P=(√((3(√2))^2 +(5(√3))^2  ))(((3(√2))/( (√((3(√2))^2 +(5(√3))^2  ))))cos θ+((5(√3))/( (√((3(√2))^2 +(5(√3))^2  )))) sin θ)  P=(√(93)) (((3(√2))/( (√(93 ))))cos θ+((5(√3))/( (√(93 )))) sin θ)  P=(√(93)) sin (θ+tan^(−1) ((3(√2))/(5(√3))))  ⇒P_(max) =(√(93))  at θ=(π/2)−tan^(−1) ((3(√2))/(5(√3)))  ⇒P_(min) =−(√(93))  at θ=−(π/2)−tan^(−1) ((3(√2))/(5(√3)))
MethodIIx232+y252=1x=3cosθ,y=5sinθP=2x+3y=32cosθ+53sinθP=(32)2+(53)2(32(32)2+(53)2cosθ+53(32)2+(53)2sinθ)P=93(3293cosθ+5393sinθ)P=93sin(θ+tan13253)Pmax=93atθ=π2tan13253Pmin=93atθ=π2tan13253
Commented by mr W last updated on 25/Jun/22

Leave a Reply

Your email address will not be published. Required fields are marked *