Menu Close

Mean-It-is-found-by-adding-all-the-values-of-the-observation-and-dividing-it-by-the-total-number-of-observations-It-is-denoted-by-x-So-x-i-1-n-x-i-n-For-an-ungrouped-frequency-




Question Number 122436 by sahiljakhar04 last updated on 17/Nov/20
Mean : It is found by adding all the values of the observation and dividing it by the  total number of observations. It is denoted by x^� .  So, x^�  = ((Σ_(i=1) ^n x_i )/n). For an ungrouped frequency distribution, it is x^�  = ((Σ_(i = 1) ^n f_i x_i )/(Σ_(i = 1) ^n f_i )) .
$$\boldsymbol{\mathrm{Mean}}\::\:\mathrm{It}\:\mathrm{is}\:\mathrm{found}\:\mathrm{by}\:\mathrm{adding}\:\mathrm{all}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{the}\:\mathrm{observation}\:\mathrm{and}\:\mathrm{dividing}\:\mathrm{it}\:\mathrm{by}\:\mathrm{the} \\ $$$$\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{observations}.\:\mathrm{It}\:\mathrm{is}\:\mathrm{denoted}\:\mathrm{by}\:\bar {{x}}. \\ $$$$\mathrm{So},\:\bar {{x}}\:=\:\frac{\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{i}} }{{n}}.\:\mathrm{For}\:\mathrm{an}\:\boldsymbol{\mathrm{ungrouped}}\:\boldsymbol{\mathrm{frequency}}\:\boldsymbol{\mathrm{distribution}},\:\mathrm{it}\:\mathrm{is}\:\bar {\boldsymbol{{x}}}\:=\:\frac{\underset{\boldsymbol{{i}}\:=\:\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\boldsymbol{{f}}_{\boldsymbol{{i}}} \boldsymbol{{x}}_{\boldsymbol{{i}}} }{\underset{\boldsymbol{{i}}\:=\:\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\boldsymbol{{f}}_{\boldsymbol{{i}}} }\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *