Menu Close

Merry-christmas-0-1-2-tanh-1-x-x-1-5-dx-




Question Number 126907 by Dwaipayan Shikari last updated on 25/Dec/20
Merry christmas !!    πŸŽ…πŸ€Άβ˜ƒοΈπŸŒ„πŸŽ„πŸ¦Œ      πŸ””πŸ””πŸ””πŸ””πŸ””πŸ””πŸ””πŸ””πŸ””  πŸŽ„πŸŽ„πŸŽ„πŸŽ„πŸŽ„πŸŽ„πŸŽ„πŸŽ„  ∫_0 ^(1/2) ((tanh^(βˆ’1) x)/( (x)^(1/5) ))dx
$$\boldsymbol{{Merry}}\:\boldsymbol{{christmas}}\:!! \\ $$$$ \\ $$πŸŽ…πŸ€Άβ˜ƒοΈπŸŒ„πŸŽ„πŸ¦Œ
$$ \\ $$$$ \\ $$πŸ””πŸ””πŸ””πŸ””πŸ””πŸ””πŸ””πŸ””πŸ””
πŸŽ„πŸŽ„πŸŽ„πŸŽ„πŸŽ„πŸŽ„πŸŽ„πŸŽ„
$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\boldsymbol{{tanh}}^{βˆ’\mathrm{1}} \boldsymbol{{x}}}{\:\sqrt[{\mathrm{5}}]{\boldsymbol{{x}}}}\boldsymbol{{dx}} \\ $$
Answered by Olaf last updated on 25/Dec/20
The function tanh^(βˆ’1)  is defined  for x∈]βˆ’1,+1[.   Not for x∈[1,e]...right ?
$$\mathrm{The}\:\mathrm{function}\:\mathrm{tanh}^{βˆ’\mathrm{1}} \:\mathrm{is}\:\mathrm{defined} \\ $$$$\left.\mathrm{for}\:{x}\in\right]βˆ’\mathrm{1},+\mathrm{1}\left[.\:\right. \\ $$$$\mathrm{Not}\:\mathrm{for}\:{x}\in\left[\mathrm{1},{e}\right]…\mathrm{right}\:? \\ $$
Commented by Dwaipayan Shikari last updated on 25/Dec/20
I have corrected the question   :)
$$\left.{I}\:{have}\:{corrected}\:{the}\:{question}\:\:\::\right) \\ $$
Commented by Dwaipayan Shikari last updated on 25/Dec/20
tanh^(βˆ’1) x=(1/2)log(((1+x)/(1βˆ’x)))
$${tanh}^{βˆ’\mathrm{1}} {x}=\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}βˆ’{x}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *