Menu Close

min-y-9-sin-2-x-4-csc-2-x-3-




Question Number 172613 by cortano1 last updated on 29/Jun/22
   min y=9 sin^2 x+ 4 csc^2 x + 3
miny=9sin2x+4csc2x+3
Answered by Rasheed.Sindhi last updated on 29/Jun/22
y=(3sin x+2 csc x)^2 −12+3  y=(3sin x+2 csc x)^2 −9  min y=(0)^2 −9=−9
y=(3sinx+2cscx)212+3y=(3sinx+2cscx)29miny=(0)29=9
Commented by cortano1 last updated on 29/Jun/22
yes....min = 15
yes.min=15
Commented by mr W last updated on 29/Jun/22
please recheck sir:  i think  3 sin x+2 cosec x=0 is not possible.
pleaserechecksir:ithink3sinx+2cosecx=0isnotpossible.
Commented by Rasheed.Sindhi last updated on 29/Jun/22
You′re right sir!
Yourerightsir!
Answered by mr W last updated on 29/Jun/22
y=9 sin^2  x+4 cosec^2  x+3  ≥2(√(9×4))+3=15=minimum
y=9sin2x+4cosec2x+329×4+3=15=minimum
Answered by greougoury555 last updated on 29/Jun/22
 f(x)= 9sin^2 x+(4/(sin^2 x))+9   let sin^2 x=t ; t≥0   y= 9t+(4/t)+3   y ′=9−(4/t^2 ) = 0 ⇒(((3t−2)(3t+2))/t^2 )=0   t^2 =(2/3)=sin^2 x   f(x)_(min) = 9.(2/3)+4.(3/2)+3=6+6+3=15
f(x)=9sin2x+4sin2x+9letsin2x=t;t0y=9t+4t+3y=94t2=0(3t2)(3t+2)t2=0t2=23=sin2xf(x)min=9.23+4.32+3=6+6+3=15

Leave a Reply

Your email address will not be published. Required fields are marked *