Menu Close

Minimum-distance-between-curves-y-2-4x-and-x-2-y-2-12x-31-0-is-




Question Number 57578 by rahul 19 last updated on 07/Apr/19
Minimum distance between curves  y^2 =4x and x^2 +y^2 −12x+31=0 is ?
$${Minimum}\:{distance}\:{between}\:{curves} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{x}\:{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{31}=\mathrm{0}\:{is}\:? \\ $$
Answered by mr W last updated on 07/Apr/19
x^2 +y^2 −12x+31=0  (x−6)^2 +y^2 =((√5))^2   ⇒circle with radius (√5) and center (6,0).    eqn. of circle with radius r and center (6,0):  (x−6)^2 +y^2 =r^2   such that the circle touches the curve  y^2 =4x  ⇒(x−6)^2 +4x=r^2   ⇒x^2 −8x+(36−r^2 )=0  ⇒Δ=64−4(36−r^2 )=0  ⇒r=2(√5)    Minimum distance between curves  y^2 =4x and x^2 +y^2 −12x+31=0 is   2(√5)−(√5)=(√5)
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{31}=\mathrm{0} \\ $$$$\left({x}−\mathrm{6}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\left(\sqrt{\mathrm{5}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{circle}\:{with}\:{radius}\:\sqrt{\mathrm{5}}\:{and}\:{center}\:\left(\mathrm{6},\mathrm{0}\right). \\ $$$$ \\ $$$${eqn}.\:{of}\:{circle}\:{with}\:{radius}\:{r}\:{and}\:{center}\:\left(\mathrm{6},\mathrm{0}\right): \\ $$$$\left({x}−\mathrm{6}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${such}\:{that}\:{the}\:{circle}\:{touches}\:{the}\:{curve} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{x} \\ $$$$\Rightarrow\left({x}−\mathrm{6}\right)^{\mathrm{2}} +\mathrm{4}{x}={r}^{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −\mathrm{8}{x}+\left(\mathrm{36}−{r}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow\Delta=\mathrm{64}−\mathrm{4}\left(\mathrm{36}−{r}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow{r}=\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$ \\ $$$${Minimum}\:{distance}\:{between}\:{curves} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{x}\:{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{31}=\mathrm{0}\:{is}\: \\ $$$$\mathrm{2}\sqrt{\mathrm{5}}−\sqrt{\mathrm{5}}=\sqrt{\mathrm{5}} \\ $$
Commented by mr W last updated on 07/Apr/19
Commented by rahul 19 last updated on 08/Apr/19
thank you sir.
Answered by MJS last updated on 07/Apr/19
the center of the circle is  ((6),(0) ); r=(√5)  ⇒ the point of the parabola with minimum  distance from this center is the same as the  point with the minimum distance of the  circle.  ∣ [(x),((2(√x))) ]− [(6),(0) ]∣^2 =x^2 −8x+36  (d/dx)[x^2 −8x+36]=2x−8=0 ⇒ x=4  distance=(√(x^2 −8x+36))−(√5)=(√(20))−(√5)=(√5)
$$\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{is}\:\begin{pmatrix}{\mathrm{6}}\\{\mathrm{0}}\end{pmatrix};\:{r}=\sqrt{\mathrm{5}} \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{the}\:\mathrm{parabola}\:\mathrm{with}\:\mathrm{minimum} \\ $$$$\mathrm{distance}\:\mathrm{from}\:\mathrm{this}\:\mathrm{center}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{the} \\ $$$$\mathrm{point}\:\mathrm{with}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{circle}. \\ $$$$\mid\begin{bmatrix}{{x}}\\{\mathrm{2}\sqrt{{x}}}\end{bmatrix}−\begin{bmatrix}{\mathrm{6}}\\{\mathrm{0}}\end{bmatrix}\mid^{\mathrm{2}} ={x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{36} \\ $$$$\frac{{d}}{{dx}}\left[{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{36}\right]=\mathrm{2}{x}−\mathrm{8}=\mathrm{0}\:\Rightarrow\:{x}=\mathrm{4} \\ $$$$\mathrm{distance}=\sqrt{{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{36}}−\sqrt{\mathrm{5}}=\sqrt{\mathrm{20}}−\sqrt{\mathrm{5}}=\sqrt{\mathrm{5}} \\ $$
Commented by rahul 19 last updated on 08/Apr/19
thank you sir.

Leave a Reply

Your email address will not be published. Required fields are marked *