Menu Close

minimum-value-f-x-y-x-2-y-2-with-constrain-g-x-y-x-2-y-16-




Question Number 101258 by bemath last updated on 01/Jul/20
minimum value f(x,y)=x^2 +y^2   with constrain g(x,y)= x^2 y−16
minimumvaluef(x,y)=x2+y2withconstraing(x,y)=x2y16
Commented by john santu last updated on 01/Jul/20
f(x,y,λ)=x^2 +y^2 +λ(x^2 y−16)  (∂f/∂x) = 2x+λ(2xy)=0 →λ=((−2x)/(2xy)) =− (1/y)  (∂f/∂y) = 2y+λx^2 =0 →λ=−((2y)/x^2 )  ⇔−(1/y) = ((−2y)/x^2 ) ⇒y^2 =(1/2)x^2   (∂f/∂λ) = x^2 y−16=0 →x^2 = ((16)/y)  we get y^2 =(1/2)(((16)/y)) ⇒y^3 = 8  y = 2 ∧x = ± 2(√2)   { ((for (2(√2),2) ⇒f(2(√2) ,2)= 12)),((for (−2(√2) ,2)⇒f(−2(√2) ,2)=12)) :}  minimum value is 12 ★
f(x,y,λ)=x2+y2+λ(x2y16)fx=2x+λ(2xy)=0λ=2x2xy=1yfy=2y+λx2=0λ=2yx21y=2yx2y2=12x2fλ=x2y16=0x2=16ywegety2=12(16y)y3=8y=2x=±22{for(22,2)f(22,2)=12for(22,2)f(22,2)=12minimumvalueis12
Commented by bramlex last updated on 02/Jul/20
♦♣⊸
Answered by mr W last updated on 01/Jul/20
y=((16)/x^2 )  f(x)=x^2 +(((16)/x^2 ))^2   (df/dx)=2x+2(((16)/x^2 ))(−((2×16)/x^3 ))=0  x−(2^9 /x^5 )=0  ⇒x^2 =8  f_(min) =8+(((16)/8))^2 =12
y=16x2f(x)=x2+(16x2)2dfdx=2x+2(16x2)(2×16x3)=0x29x5=0x2=8fmin=8+(168)2=12
Answered by 1549442205 last updated on 07/Jul/20
f(x,y)=h(y)=((16)/y)+y^2 ⇒h′(y)=−((16)/y^2 )+2y=0  ⇔2y^3 −16=0⇔y=2,h ”(y)=((32)/y^3 )+2  h”(2)=6>0⇒h_(min) (y)=h(2)=12  ⇒f(x,y)_(min) =h_(min) (y)=12 when y=2  x^2 =((16)/2)=8⇔x=±(√2)  Thus,f_(min) (x,y)=12 when (x;y)∈{(−2(√2);2);(2(√2);2)}  other way:  f(x,y)=g(x)=x^2 +(((16)/x^2 ))^2 =x^2 +((256)/x^4 )  =(x^2 /2)+(x^2 /2)+((256)/x^4 )≥3^3 (√((x^2 /2).(x^2 /2).((256)/x^4 )))=  =3^3 (√(64))=3×4=12.  Equality ocurrs if and only if    { (((x^2 /2)=((256)/x^4 ))),((x^2 y=16)) :} ⇔ { ((x^2 =8)),((y=2)) :} ⇔(x,y)∈{(−2(√2);2);(2(√2);2)}  Thus,f_(min) (x,y)=g_(min) (x)=12when  (x,y)∈{(−2(√2);2);(2(√2);2)}
f(x,y)=h(y)=16y+y2h(y)=16y2+2y=02y316=0y=2,h(y)=32y3+2h(2)=6>0hmin(y)=h(2)=12f(x,y)min=hmin(y)=12wheny=2x2=162=8x=±2Thus,fmin(x,y)=12when(x;y){(22;2);(22;2)}otherway:f(x,y)=g(x)=x2+(16x2)2=x2+256x4=x22+x22+256x433x22.x22.256x4==3364=3×4=12.Equalityocurrsifandonlyif{x22=256x4x2y=16{x2=8y=2(x,y){(22;2);(22;2)}Thus,fmin(x,y)=gmin(x)=12when(x,y){(22;2);(22;2)}

Leave a Reply

Your email address will not be published. Required fields are marked *