Menu Close

Minimum-value-of-b-that-satisfy-the-following-inequality-53-201-lt-a-b-lt-4-15-is-




Question Number 56301 by naka3546 last updated on 13/Mar/19
Minimum  value  of  b  that  satisfy  the  following  inequality                  ((53)/(201))  <  (a/b)  <  (4/(15))     is   ...
Minimumvalueofbthatsatisfythefollowinginequality53201<ab<415is
Commented by naka3546 last updated on 13/Mar/19
a, b  are  positive integers .
a,barepositiveintegers.
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Mar/19
201=3×67    15=3×5  ((53)/(201))=((265)/(1005))  and  (4/(15))=((4×67)/(15×67))=((268)/(1005))  (a/b)=((266)/(1005)) ←first answer  (a/b)=((267)/(1005))←second answer  so b=1005
201=3×6715=3×553201=2651005and415=4×6715×67=2681005ab=2661005firstanswerab=2671005secondanswersob=1005
Commented by mr W last updated on 14/Mar/19
with mininmum b: (9/(34))  the next are ((13)/(49)), ((14)/(53)), ((17)/(64)),((19)/(72))....
withmininmumb:934thenextare1349,1453,1764,1972.
Commented by naka3546 last updated on 14/Mar/19
how  to  get  it, sir.
howtogetit,sir.
Commented by MJS last updated on 14/Mar/19
((53)/(201))<(a/b)<(4/(15))  ((53)/(201))b<a<(4/(15))b  b≠15n ∧ b≠201n  ⌈((53)/(201))b⌉>⌊(4/(15))b⌋ xor ⌈((53)/(201))b⌉=⌊(4/(15))b⌋=a  now we must try
53201<ab<41553201b<a<415bb15nb201n53201b>415bxor53201b=415b=anowwemusttry
Commented by Kunal12588 last updated on 13/Mar/19
sir ((53)/(201))<((33)/(125))<(4/(15))  don′t know there can be smaller answers.
sir53201<33125<415dontknowtherecanbesmalleranswers.
Commented by naka3546 last updated on 14/Mar/19
(9/(34))  may  be,  I  don′t  know about  it.
934maybe,Idontknowaboutit.
Answered by mr W last updated on 15/Mar/19
this is my method:  ((53)/(201))  <  (a/b)  <  (4/(15))  ⇒ ((201)/(53))>(b/a)>((15)/4)  ⇒ ((15a)/4)<b<((201a)/(53))  ⇒⌊((15a)/4)⌋+1≤b≤⌈((201a)/(53))⌉−1    for a given value of a we calculate  ⌊((15a)/4)⌋+1 and ⌈((201a)/(53))⌉−1.  if ⌊((15a)/4)⌋+1≤⌈((201a)/(53))⌉−1, then b exists,  and b=⌊((15a)/4)⌋+1...⌈((201a)/(53))⌉−1.    if we start with a=1,2,3,... we′ll get all  possible (infinite) solutions:  a=9⇒b=34  a=13⇒b=49  a=14⇒b=53  a=17⇒b=64  a=19⇒b=72  a=21⇒b=79  a=22⇒b=83  a=23⇒b=87  a=24⇒b=91  a=25⇒b=94  a=29⇒b=109  a=30⇒b=113  a=31⇒b=117  a=32⇒b=121  a=33⇒b=124, 125  a=35⇒b=132  ......  a=117⇒b=439, 440, 442, 443  ......
thisismymethod:53201<ab<41520153>ba>15415a4<b<201a5315a4+1b201a531foragivenvalueofawecalculate15a4+1and201a531.if15a4+1201a531,thenbexists,andb=15a4+1201a531.ifwestartwitha=1,2,3,wellgetallpossible(infinite)solutions:a=9b=34a=13b=49a=14b=53a=17b=64a=19b=72a=21b=79a=22b=83a=23b=87a=24b=91a=25b=94a=29b=109a=30b=113a=31b=117a=32b=121a=33b=124,125a=35b=132a=117b=439,440,442,443
Commented by mr W last updated on 15/Mar/19
is there an easier way than this?
isthereaneasierwaythanthis?
Commented by MJS last updated on 16/Mar/19
no.
no.

Leave a Reply

Your email address will not be published. Required fields are marked *