Menu Close

Minimum-value-of-function-f-x-16x-2-cos-2-x-4-x-cos-x-where-pi-lt-x-lt-0-




Question Number 115332 by bobhans last updated on 25/Sep/20
Minimum value of function   f(x)= ((16x^2  cos^2 x+4)/(x cos x)) where −π<x<0
Minimumvalueoffunctionf(x)=16x2cos2x+4xcosxwhereπ<x<0
Commented by bemath last updated on 25/Sep/20
⇔ f(x)=16x cos x + 4x^(−1)  sec x  f ′(x)=16cos x−16xsin x+(−4x^(−2)  sec x+4x^(−1)  sec x tan x )=0  4cos x−4xsin x = x^(−1) sec x (x^(−1) −tan x)  4cos x−4xsin x = (1/(xcos x))((1/x)−((sin x)/(cos x)))  4cos x−4xsin x = ((cos x−xsin x)/(xcos x))  (cos x−xsin x)(4−(1/(x cos x)))=0  (cos x−xsin x)(((4x cos x−1)/(x cos x)))=0   { ((cos x = x sin x ⇒tan x = (1/x))),((4x cos x = 1⇒ cos x = (1/(4x)))) :}  (1) for tan x = (1/x) ⇒tan^2 x = (1/x^2 )         sec^2 x = 1+(1/x^2 ) = ((x^2 +1)/x^2 )         cos^2 x = (x^2 /(x^2 +1)) ⇒ cos x = ± (√(x^2 /(x^2 +1)))  f(x)= ((16x^2 ((x^2 /(x^2 +1)))+4)/(± x(√(x^2 /(x^2 +1)))  ))=((16x^4 +4x^2 +4)/(±x^2  (√(x^2 +1))))    (2) for cos x = (1/(4x))     f(x) = ((16x^2  ((1/(16x^2 ))) +4)/(x((1/(4x))))) = (5/(((1/4)))) =20
f(x)=16xcosx+4x1secxf(x)=16cosx16xsinx+(4x2secx+4x1secxtanx)=04cosx4xsinx=x1secx(x1tanx)4cosx4xsinx=1xcosx(1xsinxcosx)4cosx4xsinx=cosxxsinxxcosx(cosxxsinx)(41xcosx)=0(cosxxsinx)(4xcosx1xcosx)=0{cosx=xsinxtanx=1x4xcosx=1cosx=14x(1)fortanx=1xtan2x=1x2sec2x=1+1x2=x2+1x2cos2x=x2x2+1cosx=±x2x2+1f(x)=16x2(x2x2+1)+4±xx2x2+1=16x4+4x2+4±x2x2+1(2)forcosx=14xf(x)=16x2(116x2)+4x(14x)=5(14)=20
Commented by soumyasaha last updated on 25/Sep/20
  f(x) = 16xcosx + (4/(xcosx))     Now, −π <x <0 ⇒ cosx < 0 and x ≠(π/2)               ⇒ xcosx > 0   We know,  A.M. ≥ G.M.     ⇒ ((16cosx + (4/(xcosx)))/2) ≥ (√(16cosx.(4/(xcosx))))     ⇒ ((f(x))/2) ≥ (√(64))     ⇒ f(x) ≥ 16    ∴ minimum value of f(x) is 16.
f(x)=16xcosx+4xcosxNow,π<x<0cosx<0andxπ2xcosx>0Weknow,A.M.G.M.16cosx+4xcosx216cosx.4xcosxf(x)264f(x)16minimumvalueoff(x)is16.
Commented by bemath last updated on 25/Sep/20
Answered by soumyasaha last updated on 25/Sep/20
Commented by bemath last updated on 25/Sep/20
when x = ? sir for f(x) minimum  i don′t have exact value
whenx=?sirforf(x)minimumidonthaveexactvalue
Answered by MJS_new last updated on 25/Sep/20
cos −(π/2) =0 ⇒ absolute minima/maxima  don′t exist  you can only find local minima/maxima
cosπ2=0absoluteminima/maximadontexistyoucanonlyfindlocalminima/maxima
Answered by TANMAY PANACEA last updated on 25/Sep/20
((16t^2 +4)/t)      t=xcosx  4(4t+(1/t))  4[(2(√t) −(1/( (√t))))^2 +2×2(√t) ×(1/( (√t)))]  4[(2(√t) −(1/( (√t))))^2 +4]  16+4(2(√t) −(1/( (√t))))^2 →min value =16
16t2+4tt=xcosx4(4t+1t)4[(2t1t)2+2×2t×1t]4[(2t1t)2+4]16+4(2t1t)2minvalue=16
Answered by MJS_new last updated on 25/Sep/20
local maximum at  (((−π)),((16π+(4/π))) )  local minimum at  (((≈−1.84520)),((16)) )  local maximum at  (((≈−1.09801)),((−16)) )  local minimum at  (((≈−.860334)),((≈−16.1064)) )  local maximum at  (((≈−.610031)),((−16)) )  absolute min/max doesn′t exist because  −∞<f(x)<∞  proof:  lim_(x→(−(π/2))^− )  f(x) =+∞  lim_(x→(−(π/2))^+ )  f(x)=−∞  lim_(x→0^− )  f(x) =−∞
localmaximumat(π16π+4π)localminimumat(1.8452016)localmaximumat(1.0980116)localminimumat(.86033416.1064)localmaximumat(.61003116)absolutemin/maxdoesntexistbecause<f(x)<proof:limx(π2)f(x)=+limx(π2)+f(x)=limx0f(x)=

Leave a Reply

Your email address will not be published. Required fields are marked *