Menu Close

minimum-value-of-function-f-x-3sin-x-4cos-x-10-3sin-x-4cos-x-10-




Question Number 159642 by tounghoungko last updated on 19/Nov/21
minimum value of function      f(x)=(√((3sin x−4cos x−10)(3sin x+4cos x−10)))
minimumvalueoffunctionf(x)=(3sinx4cosx10)(3sinx+4cosx10)
Commented by bobhans last updated on 19/Nov/21
 g(x)=((3sin x−10)−4cos x)((3sin x−10)+4cos x)  g(x)=(3sin x−10)^2 −16cos^2 x   g(x)=9sin^2 x−60sin x+100−16(1−sin^2 x)  g(x)=25sin^2 x−60sin x+84  g(x) = (5sin x−6)^2 +48    −5≤5sin x≤5 ⇒−11≤5sin x−6≤−1  ⇒0<(5sin x−6)^2 ≤121  g(x)_(min)  = (5.1−6)^2 +48 = 49  f(x)_(min)  =(√(49)) = 7
g(x)=((3sinx10)4cosx)((3sinx10)+4cosx)g(x)=(3sinx10)216cos2xg(x)=9sin2x60sinx+10016(1sin2x)g(x)=25sin2x60sinx+84g(x)=(5sinx6)2+4855sinx5115sinx610<(5sinx6)2121g(x)min=(5.16)2+48=49f(x)min=49=7
Answered by mr W last updated on 19/Nov/21
f(x)=(√((3 sin x−10)^2 −(4 cos x)^2 ))  f(x)=(√(9 sin^2  x+100−60 sin x−16 cos^2  x))  f(x)=(√(25 sin^2  x−60 sin x+84))  f(x)=(√(25(sin x−(6/( 5)))^2 +48))  f(x)_(min) =(√(25(1−(6/( 5)))^2 +48))=7  f(x)_(max) =(√(25(−1−(6/( 5)))^2 +48))=13
f(x)=(3sinx10)2(4cosx)2f(x)=9sin2x+10060sinx16cos2xf(x)=25sin2x60sinx+84f(x)=25(sinx65)2+48f(x)min=25(165)2+48=7f(x)max=25(165)2+48=13
Commented by mnjuly1970 last updated on 19/Nov/21
bravo sir W
bravosirW
Answered by FongXD last updated on 19/Nov/21
f(x)=(√((3sinx−10−4cosx)(3sinx−10+4cosx)))  f(x)=(√((3sinx−10)^2 −(4cosx)^2 ))  f(x)=(√(9sin^2 x−60sinx+100−16(1−sin^2 x)))  f(x)=(√(25sin^2 x−60sinx+84))  f(x)=(√((5sinx−6)^2 +48))  Min of f(x) occurs when min of ∣5sinx−6∣ occurs  we have: −1≤sinx≤1, ∀x∈R  ⇔ −11≤5sinx−6≤−1  ⇔ 1≤∣5sinx−6∣≤11, ⇒ Min of ∣5sinx−6∣=1  therefore, Min of f(x)=(√(1^2 +48))=7
f(x)=(3sinx104cosx)(3sinx10+4cosx)f(x)=(3sinx10)2(4cosx)2f(x)=9sin2x60sinx+10016(1sin2x)f(x)=25sin2x60sinx+84f(x)=(5sinx6)2+48Minoff(x)occurswhenminof5sinx6occurswehave:1sinx1,xR115sinx611⩽∣5sinx6∣⩽11,Minof5sinx6∣=1therefore,Minoff(x)=12+48=7
Commented by mnjuly1970 last updated on 19/Nov/21
Commented by mnjuly1970 last updated on 19/Nov/21
perfect
perfect

Leave a Reply

Your email address will not be published. Required fields are marked *