Menu Close

Montrer-a-partir-du-crite-re-de-Cauchy-que-U-n-k-1-n-1-k-2-est-une-de-Cauchy-Show-by-using-Cauchy-s-sequence-definition-that-U-n-k-1-n-1-k-2-is-a-sequence-of




Question Number 161504 by mathocean1 last updated on 18/Dec/21
Montrer a^�  partir du crite^� re de   Cauchy que U_n =Σ_(k=1) ^n (1/k^2 ) est une  de Cauchy.  −−−−−−−−−−−−−−−−  Show by using Cauchy′s sequence  definition that U_n =Σ_(k=1) ^n (1/k^2 ) is a   sequence of Cauchy.
Montrera`partirducritere`deCauchyqueUn=nk=11k2estunedeCauchy.ShowbyusingCauchyssequencedefinitionthatUn=nk=11k2isasequenceofCauchy.
Answered by mindispower last updated on 20/Dec/21
⇔∀ε>0 ∃N ∀(n,m)≥N ∣U_n −U_m ∣<ε  soit ε>0  U_n −U_m =Σ_(k=m+1) ^n (1/k^2 )=S_(n,m)   f(x)=(1/x^2 )  (1/((k+1)^2 ))≤∫_k ^(k+1) (1/x^2 )dx≤(1/k^2 )  ⇒Σ_(k=m) ^(n−1) (1/((k+1)^2 ))<(1/k)−(1/(k+1))  S_(n,m) <(1/m)−(1/n)=((n−m)/(nm))  soit N∈N tell? Que (1/N)<ε ⇒N=[ε]+1  ⇒S_(n,m) =(1/m)−(1/n)<(1/N)<ε,∀(n,m)>N  ⇒U_n est de cauchy
ϵ>0N(n,m)NUnUm∣<ϵsoitϵ>0UnUm=nk=m+11k2=Sn,mf(x)=1x21(k+1)2kk+11x2dx1k2n1k=m1(k+1)2<1k1k+1Sn,m<1m1n=nmnmsoitNNtell?Que1N<ϵN=[ϵ]+1Sn,m=1m1n<1N<ϵ,(n,m)>NUnestdecauchy
Commented by mathocean1 last updated on 21/Dec/21
Thanks sir!
Thankssir!

Leave a Reply

Your email address will not be published. Required fields are marked *