Question Number 153009 by SANOGO last updated on 04/Sep/21

Commented by mr W last updated on 04/Sep/21

Commented by SANOGO last updated on 04/Sep/21

Answered by puissant last updated on 04/Sep/21
![montrons alors que ∀n∈N, 2cos(π/2^n )=(√(2+(√(2+....+(√2))))) ⇒ cos(π/2^n )=(1/2)(√(2+(√(2+(√(2+..(√2))))))) →pour n=1 la propriete^� est vraie.. →soit n∈N, supposons la propriete^� vraie au rang n et prouvons au rang n+1. Remarquons au pre^� alable que ∀x∈[0;(π/2)] comme cos^2 x=((cos2x+1)/2)⇒cos((x/2))=(√((cosx+1)/2)) et cos((π/2^(n+1) ))=cos((1/2)((π/2^n ))) =(√((1/2)(cos((π/2^n ))+1))) =(√((1/2)((1/2)(√(2+(√(2+...+(√2)))))+1))) on a ainsi n radicaux d′apres l′hypothese de reccurence. =(1/2)(√(2+(√(2+...+(√2))))) (n+1 radicaux) on prouve ainsi la propriete^� par reccurence..](https://www.tinkutara.com/question/Q153014.png)
Commented by SANOGO last updated on 04/Sep/21

Answered by som(math1967) last updated on 04/Sep/21
![cos(𝛑/4)=(1/( (√2))) 2cos(𝛑/4)=(√2) ∴2cos(𝛑/2^2 )=(√2) cos(𝛑/8)=(√((1+cos(𝛑/4))/2)) [∵cos(𝛉/2)=(√((1+cos𝛉)/2)) ] cos(𝛑/8)=(√(((√2)+1)/(2(√2))))=(√((2+(√2))/4))= 2cos(𝛑/2^3 )=(√(2+(√2))) same way 2cos(𝛑/2^4 )=(√(2+(√(2+(√2))))) 2cos(𝛑/2^5 )=(√(2+(√(2+(√(2+(√2))))))) .......2cos(𝛑/2^n )=(√(2+(√(2+(√(2+...(√2)))))))](https://www.tinkutara.com/question/Q153015.png)
Commented by SANOGO last updated on 04/Sep/21

Answered by Jonathanwaweh last updated on 05/Sep/21

Commented by SANOGO last updated on 05/Sep/21
