Menu Close

montrer-que-2cos-pi-2-n-2-2-2-




Question Number 153009 by SANOGO last updated on 04/Sep/21
montrer que:  2cos(π/2^n )=(√(2 +(√(2+...+(√2)))))
montrerque:2cosπ2n=2+2++2
Commented by mr W last updated on 04/Sep/21
please make your posts better readable!  try to set the defaut font size 20.  try to avoid using extremly large or  extremly small fonts!
pleasemakeyourpostsbetterreadable!trytosetthedefautfontsize20.trytoavoidusingextremlylargeorextremlysmallfonts!
Commented by SANOGO last updated on 04/Sep/21
ok thank you i understood
okthankyouiunderstood
Answered by puissant last updated on 04/Sep/21
montrons alors que ∀n∈N, 2cos(π/2^n )=(√(2+(√(2+....+(√2)))))  ⇒ cos(π/2^n )=(1/2)(√(2+(√(2+(√(2+..(√2)))))))  →pour n=1 la propriete^�  est vraie..  →soit n∈N, supposons la propriete^�  vraie  au rang n et prouvons au rang n+1.  Remarquons au pre^� alable que ∀x∈[0;(π/2)]  comme cos^2 x=((cos2x+1)/2)⇒cos((x/2))=(√((cosx+1)/2))  et cos((π/2^(n+1) ))=cos((1/2)((π/2^n )))  =(√((1/2)(cos((π/2^n ))+1)))  =(√((1/2)((1/2)(√(2+(√(2+...+(√2)))))+1))) on a ainsi  n radicaux d′apres l′hypothese de reccurence.  =(1/2)(√(2+(√(2+...+(√2)))))  (n+1 radicaux)  on prouve ainsi la propriete^�  par reccurence..
montronsalorsquenN,2cosπ2n=2+2+.+2cosπ2n=122+2+2+..2pourn=1lapropriete´estvraie..soitnN,supposonslapropriete´vraieaurangnetprouvonsaurangn+1.Remarquonsauprealable´quex[0;π2]commecos2x=cos2x+12cos(x2)=cosx+12etcos(π2n+1)=cos(12(π2n))=12(cos(π2n)+1)=12(122+2++2+1)onaainsinradicauxdapreslhypothesedereccurence.=122+2++2(n+1radicaux)onprouveainsilapropriete´parreccurence..
Commented by SANOGO last updated on 04/Sep/21
merci bien que Dieu te benisse
mercibienqueDieutebenisse
Answered by som(math1967) last updated on 04/Sep/21
cos(𝛑/4)=(1/( (√2)))  2cos(𝛑/4)=(√2) ∴2cos(𝛑/2^2 )=(√2)  cos(𝛑/8)=(√((1+cos(𝛑/4))/2))  [∵cos(𝛉/2)=(√((1+cos𝛉)/2)) ]  cos(𝛑/8)=(√(((√2)+1)/(2(√2))))=(√((2+(√2))/4))=  2cos(𝛑/2^3 )=(√(2+(√2)))  same way  2cos(𝛑/2^4 )=(√(2+(√(2+(√2)))))  2cos(𝛑/2^5 )=(√(2+(√(2+(√(2+(√2)))))))  .......2cos(𝛑/2^n )=(√(2+(√(2+(√(2+...(√2)))))))
cosπ4=122cosπ4=22cosπ22=2cosπ8=1+cosπ42[cosθ2=1+cosθ2]cosπ8=2+122=2+24=2cosπ23=2+2sameway2cosπ24=2+2+22cosπ25=2+2+2+2.2cosπ2n=2+2+2+2
Commented by SANOGO last updated on 04/Sep/21
merci beaucou le dur
mercibeaucouledur
Answered by Jonathanwaweh last updated on 05/Sep/21
montrer qu:  2cos(π/2^n )=(√(2 +(√(2+...+(√2)))))  posons U_n =(√(2+(√(2+...+(√(2 )))))) alors U_(n+1) =(√(U_n +2))  soit p(n) :∀nεN n≥2 2cos(Π/2^n )=U_n   1−initialisation(facile)  2−heredite  pour n≥2 fixe^′  supposons p(n) vraie et montrons que p(n+1) l′est aussi  ie 2cos(Π/2^(n+1) )=U_(n+1) . on a cos((Π/2^n ))=cos((Π/2^(n+1) )×2)                                                  =2cos^2 ((Π/2^(n+1) ))−1  donc 2cos((Π/2^(n+1) ))=4cos^2 ((Π/2^(n+1) ))−2  ie (√(2cos((Π/2^n ))+2))=2cos((Π/2^(n+1) ))  d^′ ou ona U_(n+1) =2cos((Π/2^(n+1) ))  conclusion:...
montrerqu:2cosπ2n=2+2++2posonsUn=2+2++2alorsUn+1=Un+2soitp(n):nϵNn22cosΠ2n=Un1initialisation(facile)2hereditepourn2fixesupposonsp(n)vraieetmontronsquep(n+1)lestaussiie2cosΠ2n+1=Un+1.onacos(Π2n)=cos(Π2n+1×2)=2cos2(Π2n+1)1donc2cos(Π2n+1)=4cos2(Π2n+1)2ie2cos(Π2n)+2=2cos(Π2n+1)douonaUn+1=2cos(Π2n+1)conclusion:
Commented by SANOGO last updated on 05/Sep/21
merci bien mon chef
mercibienmonchef

Leave a Reply

Your email address will not be published. Required fields are marked *