Menu Close

Montrer-que-a-b-c-R-3-1-a-2-bc-1-b-2-ac-1-c-2-ab-1-2-1-ab-1-bc-1-ac-




Question Number 115815 by Ar Brandon last updated on 28/Sep/20
Montrer que  ∀(a,b,c)∈(R_+ ^∗ )^3   (1/(a^2 +bc))+(1/(b^2 +ac))+(1/(c^2 +ab))≤(1/2)((1/(ab))+(1/(bc))+(1/(ac)))
Montrerque(a,b,c)(R+)31a2+bc+1b2+ac+1c2+ab12(1ab+1bc+1ac)
Answered by 1549442205PVT last updated on 29/Sep/20
We have:  (1/(a^2 +bc))+(1/(b^2 +ac))+(1/(c^2 +ab))≤(1/2)((1/(ab))+(1/(bc))+(1/(ac)))  ⇔(1/(a^2 +bc))+(1/(b^2 +ac))+(1/(c^2 +ab))≤((a+b+c)/(2abc))(1)  Applying Cauchy′s inequality for two  positive numbers we have:   a^2 +bc≥2a(√(bc)),b^2 +ac≥2b(√(ac))  c^2 +ab≥2(√(ab)),it follows that  L.H.S≤(1/(2a(√(bc))))+(1/(2b(√(ac))))+(1/(2c(√(ab))))  Hence,we just need prove that:  (1/(2a(√(bc))))+(1/(2b(√(ac))))+(1/(2c(√(ab))))≤((a+b+c)/(2abc))(2)  ⇔(1/( (√a)))+(1/( (√b)))+(1/( (√c)))≤((a+b+c)/( (√(abc))))  ⇔(√(ab))+(√(bc))+(√(ca))≤a+b+c  ⇔2((√(ab))+(√(bc))+(√(ca)))≤2(a+b+c)  ⇔((√a)−(√b))^2 +((√b)−(√c))^2 +((√c)−(√a))^2 ≥0  This inequality is always true  ∀a,b,c>0.Hence,(2)is true infer (1)is   true.Thus,the given inequality is  proved.The equality ocurrs if and only  if a=b=c.(Q.E.D)
Wehave:1a2+bc+1b2+ac+1c2+ab12(1ab+1bc+1ac)1a2+bc+1b2+ac+1c2+aba+b+c2abc(1)ApplyingCauchysinequalityfortwopositivenumberswehave:a2+bc2abc,b2+ac2bacc2+ab2ab,itfollowsthatL.H.S12abc+12bac+12cabHence,wejustneedprovethat:12abc+12bac+12caba+b+c2abc(2)1a+1b+1ca+b+cabcab+bc+caa+b+c2(ab+bc+ca)2(a+b+c)(ab)2+(bc)2+(ca)20Thisinequalityisalwaystruea,b,c>0.Hence,(2)istrueinfer(1)istrue.Thus,thegiveninequalityisproved.Theequalityocurrsifandonlyifa=b=c.(Q.E.D)

Leave a Reply

Your email address will not be published. Required fields are marked *