Menu Close

Montrer-que-la-suite-de-finie-par-u-n-k-1-n-x-k-k-est-une-suite-de-Cauchy-




Question Number 159796 by Ar Brandon last updated on 21/Nov/21
Montrer que la suite de^� finie par   u_n =Σ_(k=1) ^n (x^k /k) est une suite de Cauchy.
Montrerquelasuitedefinie´parun=nk=1xkkestunesuitedeCauchy.
Answered by alcohol last updated on 21/Nov/21
let ε>0 find N_ε  s.t ∀n,m ∈N: n≥m and n,m>N_ε   ⇒ ∣U_n −U_m ∣ <ε  U_n =Σ_(k=1) ^n (x^k /k) ; U_m =Σ_(k=1) ^m (x^k /k)  ∣U_n −U_m ∣=∣Σ_(k=1 ) ^n (x^k /k)−Σ_(k=1) ^m (x^k /k)∣  let n = m+1  ⇒ ∣U_n −U_m ∣=∣Σ_(k=1) ^(m+1) (x^k /k)−Σ_(k=1) ^m (x^k /k)∣  ⇒ ∣U_n −U_m ∣ = ∣(Σ_(k=1) ^m (x^k /k) + (x^(m+1) /(m+1)))−Σ_(k=1) ^m (x^k /k)∣  ⇒ ∣U_n −U_m ∣=∣(x^(m+1) /(m+1))∣  ∣x∣<1 ⇒ ∣x^(m+1) ∣<1 ⇒ ∣(x^(m+1) /(m+1))∣<(1/(m+1))<m+1  take ε = m+1 ⇒ m=ε−1  ⇒ N_ε =E(ε−1) + 2021
letε>0findNεs.tn,mN:nmandn,m>NεUnUm<εUn=nk=1xkk;Um=mk=1xkkUnUm∣=∣nk=1xkkmk=1xkkletn=m+1UnUm∣=∣m+1k=1xkkmk=1xkkUnUm=(mk=1xkk+xm+1m+1)mk=1xkkUnUm∣=∣xm+1m+1x∣<1xm+1∣<1xm+1m+1∣<1m+1<m+1takeε=m+1m=ε1Nε=E(ε1)+2021
Commented by alcohol last updated on 21/Nov/21
what u asked
whatuasked
Commented by Ar Brandon last updated on 21/Nov/21
What are you doing, man ?
Whatareyoudoing,man?
Commented by Ar Brandon last updated on 21/Nov/21
Thank you. I just had some doubts
Thankyou.Ijusthadsomedoubts

Leave a Reply

Your email address will not be published. Required fields are marked *