Menu Close

montrer-que-le-quotient-d-un-nombe-rationnel-et-dun-nombre-irrationnel-est-irrationnel-




Question Number 159994 by mathocean1 last updated on 23/Nov/21
  montrer que le quotient d′un  nombe rationnel et dun nombre   irrationnel est irrationnel
montrerquelequotientdunnomberationneletdunnombreirrationnelestirrationnel
Answered by Tokugami last updated on 23/Nov/21
  show that the quotient of a  rational number and an irrational  number is irrational.    proof by contradiction:  (r_1 /i_1 )=r_2  determinant (((r_1 ,r_2 ∈Q),(i_1 ∈R−Q)))   (r_1 /r_2 )=i_1   ((a/b)/(c/d))=i_1   a,b,c,d∈Z  ((ac)/(bd))=i_1   this would mean that a ratio of integers is irrational  the opposite must be true.
showthatthequotientofarationalnumberandanirrationalnumberisirrational.proofbycontradiction:r1i1=r2r1,r2Qi1RQr1r2=i1a/bc/d=i1a,b,c,dZacbd=i1thiswouldmeanthataratioofintegersisirrationaltheoppositemustbetrue.
Commented by mathocean1 last updated on 23/Nov/21
please can you detail sir
pleasecanyoudetailsir

Leave a Reply

Your email address will not be published. Required fields are marked *