Menu Close

montrer-que-o-oo-sin-2-t-t-2-e-xt-dt-est-continu-sur-R-




Question Number 171608 by SANOGO last updated on 18/Jun/22
montrer que  ∫_o ^(+oo) ((sin^2 t)/t^2 )e^(−xt) dt  est continu sur R^+
montrerqueo+oosin2tt2extdtestcontinusurR+
Answered by aleks041103 last updated on 18/Jun/22
I(x)=∫_0 ^∞ ((sin^2 t)/t^2 )e^(−xt) dt  I ′′=∫_0 ^∞ ((sin^2 t)/t^2 )(−t)^2 e^(−xt) dt=  =∫_0 ^∞ ((1−cos(2t))/2)e^(−xt) dt=  =(1/2)∫_0 ^∞ e^(−xt) dt−(1/4)∫_0 ^∞ cos(u)e^(−(x/2)u) du  =(1/(2x))(1)−(1/4)∫_0 ^∞ Re(e^((−(x/2)+i)u) )du  ∫_0 ^∞ e^(su) du=(1/s)(lim_(u→∞) e^(su)  −1)  ⇒∫_0 ^∞ Re(e^((−(x/2)+i)u) )du=Re((1/(−(x/2)+i))(0−1))=  =Re((1/((x/2)−i)))=Re((((x/2)+i)/(((x/2))^2 +1)))=((2x)/(x^2 +4))  ⇒I′′(x)=(1/(2x))−((2x)/(4(x^2 +4)))  ⇒I′(x)=(1/2)ln(x)−(1/4)ln(x^2 +4)+c_1   ...
I(x)=0sin2tt2extdtI=0sin2tt2(t)2extdt==01cos(2t)2extdt==120extdt140cos(u)ex2udu=12x(1)140Re(e(x2+i)u)du0esudu=1s(limeusu1)0Re(e(x2+i)u)du=Re(1x2+i(01))==Re(1x2i)=Re(x2+i(x2)2+1)=2xx2+4I(x)=12x2x4(x2+4)I(x)=12ln(x)14ln(x2+4)+c1

Leave a Reply

Your email address will not be published. Required fields are marked *