Menu Close

Motion-in-two-dimensions-in-a-plane-can-be-studied-by-expressing-position-velocity-and-acceleration-as-vectors-in-Cartesian-co-ordinates-A-A-x-i-A-y-j-where-i-and-j-are-unit-vecto




Question Number 18749 by Tinkutara last updated on 29/Jul/17
Motion in two dimensions, in a plane  can be studied by expressing position,  velocity and acceleration as vectors in  Cartesian co-ordinates A^→  = A_x i^∧  + A_y j^∧   where i^∧  and j^∧  are unit vector along x  and y directions, respectively and A_x   and A_y  are corresponding components  of A^→  (Figure). Motion can also be  studied by expressing vectors in circular  polar co-ordinates as A^→  = A_r r^∧  + A_θ θ^∧   where r^∧  = (r^→ /r) = cos θ i^∧  + sin θ j^∧  and θ^∧  =  −sin θ i^∧  + cos θ j^∧  are unit vectors along  direction in which ′r′ and ′θ′ are  increasing.  (a) Express i^∧  and j^∧  in terms of r^∧  and θ^∧   (b) Show that both r^∧  and θ^∧  are unit  vectors and are perpendicular to each  other.  (c) Show that (d/dt)(r^∧ ) = ωθ^∧  where  ω = (dθ/dt) and (d/dt)(θ^∧ ) = −ωr^∧   (d) For a particle moving along a spiral  given by r^→  = αθr^∧ , where α = 1 (unit),  find dimensions of ′α′.  (e) Find velocity and acceleration in  polar vector representation for particle  moving along spiral described in (d)  above.
Motionintwodimensions,inaplanecanbestudiedbyexpressingposition,velocityandaccelerationasvectorsinCartesiancoordinatesA=Axi+Ayjwhereiandjareunitvectoralongxandydirections,respectivelyandAxandAyarecorrespondingcomponentsofA(Figure).MotioncanalsobestudiedbyexpressingvectorsincircularpolarcoordinatesasA=Arr+Aθθwherer=rr=cosθi+sinθjandθ=sinθi+cosθjareunitvectorsalongdirectioninwhichrandθareincreasing.(a)Expressiandjintermsofrandθ(b)Showthatbothrandθareunitvectorsandareperpendiculartoeachother.(c)Showthatddt(r)=ωθwhereω=dθdtandddt(θ)=ωr(d)Foraparticlemovingalongaspiralgivenbyr=αθr,whereα=1(unit),finddimensionsofα.(e)Findvelocityandaccelerationinpolarvectorrepresentationforparticlemovingalongspiraldescribedin(d)above.
Commented by Tinkutara last updated on 29/Jul/17
Answered by ajfour last updated on 29/Jul/17
(a)Let     i^� =λr^� +μθ^�     i^� =λ(cos θi^� +sin θj^� )+μ(−sin θi^� +cos θj^� )  ⇒     [ λcos θ−μsin θ=1  ]×cos θ  and  [ λsin θ+μcos θ=0  ]×sin θ  Adding, we obtain      λ=cos θ  ;  μ=−sin θ  So,   i^� =(cos θ)r^� −(sin θ)θ^�       Let     j^� =ρr^� +εθ^�   or j^� =ρ(cos θi^� +sin θj^� )+ε(−sin θi^� +cos θj^� )  ⇒  [ ρcos θ−εsin θ=0 ]×cos θ , and         [ ρsin θ+εcos θ=1 ]×sin θ  Adding we get,          ρ=sin θ ;  ε=cos θ  Hence  j^� =(sin θ)r^� +(cos θ)θ^�   ...    ....    ....   ...   ...   ...   ....   ....  (b) ∣r^� ∣=(√(cos^2 θ+sin^2 θ)) =1              hence a unit vector          ∣θ^� ∣=(√((−sin θ)^2 +(cos θ)^2 )) =1              a unit vector.   r^� .θ^� =(cos θi^� +sin θj^� ).(−sin θi^� +cos θj^� )         =−cos θsin θ+sin θcos θ =0   ⇒    r^�  and θ^�  are ⊥ to each other.  ....   ....    ....   .....    ....    .....    ....   (c) (dr^� /dt)=(d/dt)(cos θi^� +sin θj^� )               =(dθ/dt)(−sin θi^� +cos θj^� )       ⇒   (dr^� /dt)=ωθ^�  .          (dθ^� /dt)=(d/dt)(−sin θi^� +cos θj^� )               =(dθ/dt)(−cos θi^� −sin θj^� )       ⇒  (dθ^� /dt)=−ωr^�  .      ....   .....   ....    ....    .....   ....   ....  (d)  r^→ =αθr^�   θ is dimensionless, so is unit   vector r^�  ; so  [α]=[∣r^� ∣] =M^0 L^1 T^0  .  ....   ....    ....    ....    .....    .....   ....  (e) v^→ =(dr^→ /dt)=α(d/dt)(θr^� )            =α((dθ/dt)r^� +θ(dr^� /dt))            =αω(r^� +θθ^� ) .     a^→ =(dv^→ /dt)=α(d/dt)(ωr^� +ωθθ^� )  =α((dω/dt)r^� +ω(dr^� /dt))+α(θ(dω/dt)θ^� +ω(dθ/dt)θ^� +ωθ(dθ^� /dt))  =α((dω/dt)r^� +ω(ωθ^� ))+α[θ(dω/dt)θ^� +ω(dθ/dt)θ^� +ωθ(−ωr^� )]  a^→ =α{((dω/dt)−ω^2 θ)r^� +(2ω^2 +θ(dω/dt))θ^� } .
(a)Leti^=λr^+μθ^i^=λ(cosθi^+sinθj^)+μ(sinθi^+cosθj^)[λcosθμsinθ=1]×cosθand[λsinθ+μcosθ=0]×sinθAdding,weobtainλ=cosθ;μ=sinθSo,i^=(cosθ)r^(sinθ)θ^Letj^=ρr^+ϵθ^orj^=ρ(cosθi^+sinθj^)+ϵ(sinθi^+cosθj^)[ρcosθϵsinθ=0]×cosθ,and[ρsinθ+ϵcosθ=1]×sinθAddingweget,ρ=sinθ;ϵ=cosθHencej^=(sinθ)r^+(cosθ)θ^....(b)r^∣=cos2θ+sin2θ=1henceaunitvectorθ^∣=(sinθ)2+(cosθ)2=1aunitvector.r^.θ^=(cosθi^+sinθj^).(sinθi^+cosθj^)=cosθsinθ+sinθcosθ=0r^andθ^aretoeachother..........(c)dr^dt=ddt(cosθi^+sinθj^)=dθdt(sinθi^+cosθj^)dr^dt=ωθ^.dθ^dt=ddt(sinθi^+cosθj^)=dθdt(cosθi^sinθj^)dθ^dt=ωr^..........(d)r=αθr^θisdimensionless,soisunitvectorr^;so[α]=[r^]=M0L1T0..........(e)v=drdt=αddt(θr^)=α(dθdtr^+θdr^dt)=αω(r^+θθ^).a=dvdt=αddt(ωr^+ωθθ^)=α(dωdtr^+ωdr^dt)+α(θdωdtθ^+ωdθdtθ^+ωθdθ^dt)=α(dωdtr^+ω(ωθ^))+α[θdωdtθ^+ωdθdtθ^+ωθ(ωr^)]a=α{(dωdtω2θ)r^+(2ω2+θdωdt)θ^}.
Commented by Tinkutara last updated on 29/Jul/17
Thank you very much ajfour Sir!
ThankyouverymuchajfourSir!

Leave a Reply

Your email address will not be published. Required fields are marked *