Motion-in-two-dimensions-in-a-plane-can-be-studied-by-expressing-position-velocity-and-acceleration-as-vectors-in-Cartesian-co-ordinates-A-A-x-i-A-y-j-where-i-and-j-are-unit-vecto Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 18749 by Tinkutara last updated on 29/Jul/17 Motionintwodimensions,inaplanecanbestudiedbyexpressingposition,velocityandaccelerationasvectorsinCartesianco−ordinatesA→=Axi∧+Ayj∧wherei∧andj∧areunitvectoralongxandydirections,respectivelyandAxandAyarecorrespondingcomponentsofA→(Figure).Motioncanalsobestudiedbyexpressingvectorsincircularpolarco−ordinatesasA→=Arr∧+Aθθ∧wherer∧=r→r=cosθi∧+sinθj∧andθ∧=−sinθi∧+cosθj∧areunitvectorsalongdirectioninwhich′r′and′θ′areincreasing.(a)Expressi∧andj∧intermsofr∧andθ∧(b)Showthatbothr∧andθ∧areunitvectorsandareperpendiculartoeachother.(c)Showthatddt(r∧)=ωθ∧whereω=dθdtandddt(θ∧)=−ωr∧(d)Foraparticlemovingalongaspiralgivenbyr→=αθr∧,whereα=1(unit),finddimensionsof′α′.(e)Findvelocityandaccelerationinpolarvectorrepresentationforparticlemovingalongspiraldescribedin(d)above. Commented by Tinkutara last updated on 29/Jul/17 Answered by ajfour last updated on 29/Jul/17 (a)Leti^=λr^+μθ^i^=λ(cosθi^+sinθj^)+μ(−sinθi^+cosθj^)⇒[λcosθ−μsinθ=1]×cosθand[λsinθ+μcosθ=0]×sinθAdding,weobtainλ=cosθ;μ=−sinθSo,i^=(cosθ)r^−(sinθ)θ^Letj^=ρr^+ϵθ^orj^=ρ(cosθi^+sinθj^)+ϵ(−sinθi^+cosθj^)⇒[ρcosθ−ϵsinθ=0]×cosθ,and[ρsinθ+ϵcosθ=1]×sinθAddingweget,ρ=sinθ;ϵ=cosθHencej^=(sinθ)r^+(cosθ)θ^…….….………….….(b)∣r^∣=cos2θ+sin2θ=1henceaunitvector∣θ^∣=(−sinθ)2+(cosθ)2=1aunitvector.r^.θ^=(cosθi^+sinθj^).(−sinθi^+cosθj^)=−cosθsinθ+sinθcosθ=0⇒r^andθ^are⊥toeachother.….….….…..….…..….(c)dr^dt=ddt(cosθi^+sinθj^)=dθdt(−sinθi^+cosθj^)⇒dr^dt=ωθ^.dθ^dt=ddt(−sinθi^+cosθj^)=dθdt(−cosθi^−sinθj^)⇒dθ^dt=−ωr^.….…..….….…..….….(d)r→=αθr^θisdimensionless,soisunitvectorr^;so[α]=[∣r^∣]=M0L1T0.….….….….…..…..….(e)v→=dr→dt=αddt(θr^)=α(dθdtr^+θdr^dt)=αω(r^+θθ^).a→=dv→dt=αddt(ωr^+ωθθ^)=α(dωdtr^+ωdr^dt)+α(θdωdtθ^+ωdθdtθ^+ωθdθ^dt)=α(dωdtr^+ω(ωθ^))+α[θdωdtθ^+ωdθdtθ^+ωθ(−ωr^)]a→=α{(dωdt−ω2θ)r^+(2ω2+θdωdt)θ^}. Commented by Tinkutara last updated on 29/Jul/17 ThankyouverymuchajfourSir! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-3-x-c-let-x-t-h-t-3-3ht-2-3h-2-1-t-h-3-h-c-0-let-t-t-2-3h-2-1-p-3ht-2-h-3-h-c-q-t-2-q-c-h-h-3-3h-p-q-0-q-c-h-h-3-3h-q-c-h-h-3-3h-3h-2-1-2-q-2-Next Next post: Question-84288 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.