Menu Close

Mr-Peter-has-4-children-x-are-in-class-C-and-y-are-in-class-D-x-1-and-y-1-Show-that-the-number-of-possibility-to-choose-at-random-and-simultaneous-2-children-in-same-class-verify-this-equation-p-




Question Number 97323 by mathocean1 last updated on 07/Jun/20
Mr Peter has 4 children. x are in   class C and y are in class D. x≥1 and  y≥1. Show that the number of possibility   to choose at random and simultaneous  2 children in same class verify this  equation p(x)=x^2 −4x+6
$${Mr}\:{Peter}\:{has}\:\mathrm{4}\:{children}.\:{x}\:{are}\:{in}\: \\ $$$${class}\:{C}\:{and}\:{y}\:{are}\:{in}\:{class}\:{D}.\:{x}\geqslant\mathrm{1}\:{and} \\ $$$${y}\geqslant\mathrm{1}.\:{Show}\:{that}\:{the}\:{number}\:{of}\:{possibility}\: \\ $$$${to}\:{choose}\:{at}\:{random}\:{and}\:{simultaneous} \\ $$$$\mathrm{2}\:{children}\:{in}\:{same}\:{class}\:{verify}\:{this} \\ $$$${equation}\:{p}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{6} \\ $$
Answered by mr W last updated on 07/Jun/20
x in class C, 4−x in class D.  p=C_2 ^x +C_2 ^(4−x) =((x(x−1)+(4−x)(4−x−1))/2)  =x^2 −4x+6
$${x}\:{in}\:{class}\:{C},\:\mathrm{4}−{x}\:{in}\:{class}\:{D}. \\ $$$${p}={C}_{\mathrm{2}} ^{{x}} +{C}_{\mathrm{2}} ^{\mathrm{4}−{x}} =\frac{{x}\left({x}−\mathrm{1}\right)+\left(\mathrm{4}−{x}\right)\left(\mathrm{4}−{x}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$$={x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{6} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *