Menu Close

MrW1-Going-off-of-Q12883-How-many-unique-angles-angles-in-Z-3-What-about-Z-n-




Question Number 13031 by FilupS last updated on 12/May/17
MrW1    Going off of Q12883     How many unique angles angles in Z^3 ?  What about Z^n ?
MrW1GoingoffofQ12883HowmanyuniqueanglesanglesinZ3?WhataboutZn?
Answered by mrW1 last updated on 12/May/17
For 1≤x_i ≤p_i  with 1≤i≤n and x_i  ∈P^n   the number of unique angles for points   P(x_(1,) x_2 ,∙∙∙,x_i ,∙∙∙,x_n ) is  Φ=Π_(i=1) ^n p_i −Σ_(x_1 =1) ^p_1  Σ_(x_2 =1) ^p_2  ∙∙∙Σ_(x_i =1) ^p_i  ∙∙∙Σ_(x_n =1) ^p_n  sign[GCD(x_1 ,x_2 ,∙∙∙,x_i ,∙∙∙,x_n )−1]
For1xipiwith1inandxiPnthenumberofuniqueanglesforpointsP(x1,x2,,xi,,xn)isΦ=ni=1pip1x1=1p2x2=1pixi=1pnxn=1sign[GCD(x1,x2,,xi,,xn)1]
Commented by mrW1 last updated on 12/May/17
For −r_i ≤x_i ≤p_i  with 1≤i≤n and x_i  ∈Z^n   the solution is...  in thinking...how to write the formula
Forrixipiwith1inandxiZnthesolutionisinthinkinghowtowritetheformula
Commented by FilupS last updated on 12/May/17
why is x_i ∈P^n ?
whyisxiPn?
Commented by mrW1 last updated on 12/May/17
I wanted to solve this simple case at  first: 1≤x_i ≤p_i .  The result for the case −r_i ≤x_i ≤−1 is  the same as  for 1≤x_i ≤r_i .  It means the problem for x_i ∈Z^n  will  be solved as a couple of problems  for x_i ∈P^(n.)
Iwantedtosolvethissimplecaseatfirst:1xipi.Theresultforthecaserixi1isthesameasfor1xiri.ItmeanstheproblemforxiZnwillbesolvedasacoupleofproblemsforxiPn.
Commented by mrW1 last updated on 12/May/17
Example: the solution for  −127≤x≤128  −128≤y≤127  is:  Φ=128×127−Σ_(i=1) ^(128) Σ_(j=1) ^(127) sign(GCD(i,j)−1)  +127×127−Σ_(i=1) ^(127) Σ_(j=1) ^(127) sign(GCD(i,j)−1)  +127×128−Σ_(i=1) ^(127) Σ_(j=1) ^(128) sign(GCD(i,j)−1)  +128×128−Σ_(i=1) ^(128) Σ_(j=1) ^(128) sign(GCD(i,j)−1)  +4    with line 1 for quadrant 1 and  line 2 for quadrant 2 and  line 3 for quadrant 3 and  line 4 for quadrant 4 and  line 5 for points on axes
Example:thesolutionfor127x128128y127is:Φ=128×127128i=1127j=1sign(GCD(i,j)1)+127×127127i=1127j=1sign(GCD(i,j)1)+127×128127i=1128j=1sign(GCD(i,j)1)+128×128128i=1128j=1sign(GCD(i,j)1)+4withline1forquadrant1andline2forquadrant2andline3forquadrant3andline4forquadrant4andline5forpointsonaxes
Commented by FilupS last updated on 12/May/17
This is all so fascinating and gives  me so many more questions to explore.     For example:  for  u≤x≤m  and v≤y≤n,  x, y∈Z  What is the average angle?
Thisisallsofascinatingandgivesmesomanymorequestionstoexplore.Forexample:foruxmandvyn,x,yZWhatistheaverageangle?
Commented by mrW1 last updated on 12/May/17
Let′s say −u≤x≤m and −v≤y≤n.    In quadrant 1 we have  θ_(ij) =tan^(−1) ((y/x))=tan^(−1) ((j/i))=tan^(−1) (((j′)/(i′)))  S_1 =Σ_(i=1) ^m Σ_(j=1) ^n θ_(ij) =Σ_(i=1) ^m Σ_(j=1) ^n tan^(−1) ((j/i))    In quadrant 2 we have  θ_(ij) =tan^(−1) ((y/x))=π−tan^(−1) ((j/i))=π−tan^(−1) (((j′)/(i′)))  S_2 =Σ_(i=1) ^u Σ_(j=1) ^n θ_(ij) =unπ−Σ_(i=1) ^u Σ_(j=1) ^n tan^(−1) ((j/i))    In quadrant 3 we have  θ_(ij) =tan^(−1) ((y/x))=π+tan^(−1) ((j/i))=π+tan^(−1) (((j′)/(i′)))  S_3 =Σ_(i=1) ^u Σ_(j=1) ^v θ_(ij) =uvπ+Σ_(i=1) ^u Σ_(j=1) ^v tan^(−1) ((j/i))    In quadrant 4 we have  θ_(ij) =tan^(−1) ((y/x))=2π−tan^(−1) ((j/i))=2π−tan^(−1) (((j′)/(i′)))  S_4 =Σ_(i=1) ^m Σ_(j=1) ^v θ_(ij) =2mvπ−Σ_(i=1) ^m Σ_(j=1) ^v tan^(−1) ((j/i))    On +x axis: m points with angle 0,  On +y axis: n points with angle (π/2),  On −x axis: u points with angle π,  On −y axis: v points with angle ((3π)/2),  S_5 =m×0+n×(π/2)+uπ+v×((3π)/2)=(((n+2u+3v)π)/2)    Sum of all angles:  S=S_1 +S_2 +S_3 +S_4 +S_5   =Σ_(i=1) ^m Σ_(j=1) ^n tan^(−1) ((j/i))  +unπ−Σ_(i=1) ^u Σ_(j=1) ^n tan^(−1) ((j/i))  +uvπ+Σ_(i=1) ^u Σ_(j=1) ^v tan^(−1) ((j/i))  +2mvπ−Σ_(i=1) ^m Σ_(j=1) ^v tan^(−1) ((j/i))  +(((n+2u+3v)π)/2)  =(((2un+2uv+4mv+n+2u+3v)π)/2)  +[Σ_(i=1) ^m −Σ_(i=1) ^u ][Σ_(j=1) ^n tan^(−1) ((j/i))−Σ_(j=1) ^v tan^(−1) ((j/i))]    The average angle is  θ^− =(S/((m+u+1)(n+v+1)))
Letssayuxmandvyn.Inquadrant1wehaveθij=tan1(yx)=tan1(ji)=tan1(ji)S1=mi=1nj=1θij=mi=1nj=1tan1(ji)Inquadrant2wehaveθij=tan1(yx)=πtan1(ji)=πtan1(ji)S2=ui=1nj=1θij=unπui=1nj=1tan1(ji)Inquadrant3wehaveθij=tan1(yx)=π+tan1(ji)=π+tan1(ji)S3=ui=1vj=1θij=uvπ+ui=1vj=1tan1(ji)Inquadrant4wehaveθij=tan1(yx)=2πtan1(ji)=2πtan1(ji)S4=mi=1vj=1θij=2mvπmi=1vj=1tan1(ji)On+xaxis:mpointswithangle0,On+yaxis:npointswithangleπ2,Onxaxis:upointswithangleπ,Onyaxis:vpointswithangle3π2,S5=m×0+n×π2+uπ+v×3π2=(n+2u+3v)π2Sumofallangles:S=S1+S2+S3+S4+S5=mi=1nj=1tan1(ji)+unπui=1nj=1tan1(ji)+uvπ+ui=1vj=1tan1(ji)+2mvπmi=1vj=1tan1(ji)+(n+2u+3v)π2=(2un+2uv+4mv+n+2u+3v)π2+[mi=1ui=1][nj=1tan1(ji)vj=1tan1(ji)]Theaverageangleisθ=S(m+u+1)(n+v+1)

Leave a Reply

Your email address will not be published. Required fields are marked *