Question Number 13031 by FilupS last updated on 12/May/17

Answered by mrW1 last updated on 12/May/17
![For 1≤x_i ≤p_i with 1≤i≤n and x_i ∈P^n the number of unique angles for points P(x_(1,) x_2 ,∙∙∙,x_i ,∙∙∙,x_n ) is Φ=Π_(i=1) ^n p_i −Σ_(x_1 =1) ^p_1 Σ_(x_2 =1) ^p_2 ∙∙∙Σ_(x_i =1) ^p_i ∙∙∙Σ_(x_n =1) ^p_n sign[GCD(x_1 ,x_2 ,∙∙∙,x_i ,∙∙∙,x_n )−1]](https://www.tinkutara.com/question/Q13032.png)
Commented by mrW1 last updated on 12/May/17

Commented by FilupS last updated on 12/May/17

Commented by mrW1 last updated on 12/May/17

Commented by mrW1 last updated on 12/May/17

Commented by FilupS last updated on 12/May/17

Commented by mrW1 last updated on 12/May/17
![Let′s say −u≤x≤m and −v≤y≤n. In quadrant 1 we have θ_(ij) =tan^(−1) ((y/x))=tan^(−1) ((j/i))=tan^(−1) (((j′)/(i′))) S_1 =Σ_(i=1) ^m Σ_(j=1) ^n θ_(ij) =Σ_(i=1) ^m Σ_(j=1) ^n tan^(−1) ((j/i)) In quadrant 2 we have θ_(ij) =tan^(−1) ((y/x))=π−tan^(−1) ((j/i))=π−tan^(−1) (((j′)/(i′))) S_2 =Σ_(i=1) ^u Σ_(j=1) ^n θ_(ij) =unπ−Σ_(i=1) ^u Σ_(j=1) ^n tan^(−1) ((j/i)) In quadrant 3 we have θ_(ij) =tan^(−1) ((y/x))=π+tan^(−1) ((j/i))=π+tan^(−1) (((j′)/(i′))) S_3 =Σ_(i=1) ^u Σ_(j=1) ^v θ_(ij) =uvπ+Σ_(i=1) ^u Σ_(j=1) ^v tan^(−1) ((j/i)) In quadrant 4 we have θ_(ij) =tan^(−1) ((y/x))=2π−tan^(−1) ((j/i))=2π−tan^(−1) (((j′)/(i′))) S_4 =Σ_(i=1) ^m Σ_(j=1) ^v θ_(ij) =2mvπ−Σ_(i=1) ^m Σ_(j=1) ^v tan^(−1) ((j/i)) On +x axis: m points with angle 0, On +y axis: n points with angle (π/2), On −x axis: u points with angle π, On −y axis: v points with angle ((3π)/2), S_5 =m×0+n×(π/2)+uπ+v×((3π)/2)=(((n+2u+3v)π)/2) Sum of all angles: S=S_1 +S_2 +S_3 +S_4 +S_5 =Σ_(i=1) ^m Σ_(j=1) ^n tan^(−1) ((j/i)) +unπ−Σ_(i=1) ^u Σ_(j=1) ^n tan^(−1) ((j/i)) +uvπ+Σ_(i=1) ^u Σ_(j=1) ^v tan^(−1) ((j/i)) +2mvπ−Σ_(i=1) ^m Σ_(j=1) ^v tan^(−1) ((j/i)) +(((n+2u+3v)π)/2) =(((2un+2uv+4mv+n+2u+3v)π)/2) +[Σ_(i=1) ^m −Σ_(i=1) ^u ][Σ_(j=1) ^n tan^(−1) ((j/i))−Σ_(j=1) ^v tan^(−1) ((j/i))] The average angle is θ^− =(S/((m+u+1)(n+v+1)))](https://www.tinkutara.com/question/Q13063.png)