Menu Close

My-old-problem-e-tan-x-dx-




Question Number 186192 by normans last updated on 02/Feb/23
         My old problem     ∫  e^(tan x)   dx
\boldsymbolMy\boldsymbolold\boldsymbolproblem\boldsymbole\boldsymboltan\boldsymbolx\boldsymboldx
Answered by MJS_new last updated on 02/Feb/23
∫e^(tan x) dx=       [t=tan x → dx=(dt/(t^2 +1))]  =∫(e^t /(t^2 +1))dt=∫(e^t /((t−i)(t+i)))dt=  =(i/2)∫((e^t /(t+i))−(e^t /(t−i)))dt=  =(i/2)(e^(−i) Ei (t+i) −e^i Ei (t−1))=  ...  for the Integral Exponential Function Ei (x)  do a Google search
etanxdx=[t=tanxdx=dtt2+1]=ett2+1dt=et(ti)(t+i)dt==i2(ett+ietti)dt==i2(eiEi(t+i)eiEi(t1))=fortheIntegralExponentialFunctionEi(x)doaGooglesearch

Leave a Reply

Your email address will not be published. Required fields are marked *