Menu Close

n-0-0-n-n-




Question Number 151026 by qaz last updated on 17/Aug/21
Σ_(n=0) ^∞ (0^n /(n!))=?
$$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{0}^{\mathrm{n}} }{\mathrm{n}!}=? \\ $$
Answered by ArielVyny last updated on 17/Aug/21
according to the  definition   e^t =Σ_(n=0) ^∞ (t^n /(n!)) then Σ_(n=0) ^∞ (0^n /(n!))=e^0 =1
$${according}\:{to}\:{the}\:\:{definition}\: \\ $$$${e}^{{t}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{t}^{{n}} }{{n}!}\:{then}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{0}^{{n}} }{{n}!}={e}^{\mathrm{0}} =\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *