Question Number 151026 by qaz last updated on 17/Aug/21
$$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{0}^{\mathrm{n}} }{\mathrm{n}!}=? \\ $$
Answered by ArielVyny last updated on 17/Aug/21
$${according}\:{to}\:{the}\:\:{definition}\: \\ $$$${e}^{{t}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{t}^{{n}} }{{n}!}\:{then}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{0}^{{n}} }{{n}!}={e}^{\mathrm{0}} =\mathrm{1} \\ $$