Menu Close

n-0-1-3n-1-3n-2-




Question Number 157120 by cortano last updated on 20/Oct/21
   Σ_(n=0) ^∞ ((1/((3n+1)(3n+2))))=?
n=0(1(3n+1)(3n+2))=?
Answered by puissant last updated on 20/Oct/21
Ω=Σ_(n=0) ^∞ ((1/((3n+1)(3n+2))))=(1/9)Σ_(n=0) ^∞ (1/((n+(1/3))(n+(2/3))))  =(1/9){((ψ((2/3))−ψ((1/3)))/((2/3)−(1/3)))}=(1/3){ψ((2/3))−ψ((1/3))}  •ψ(1−z)−ψ(z)=πcotan(πz) for z=(1/3)  → ψ((2/3))=ψ((1/3))+πcotan((π/3))=ψ((1/3))+(π/( (√3)))..  ⇒ Ω=(1/3){ψ((1/3))+(π/( (√3)))−ψ((1/3))}=(π/(3(√3)))..      ∴∵  Ω= Σ_(n=0) ^∞ ((1/((3n+1)(3n+2)))) = (π/(3(√3)))..                ...............Le puissant...............
Ω=n=0(1(3n+1)(3n+2))=19n=01(n+13)(n+23)=19{ψ(23)ψ(13)2313}=13{ψ(23)ψ(13)}ψ(1z)ψ(z)=πcotan(πz)forz=13ψ(23)=ψ(13)+πcotan(π3)=ψ(13)+π3..Ω=13{ψ(13)+π3ψ(13)}=π33..∴∵Ω=n=0(1(3n+1)(3n+2))=π33..Lepuissant
Commented by Tawa11 last updated on 20/Oct/21
great sir
greatsir
Answered by cortano last updated on 20/Oct/21
 Σ_(n=0) ^∞ ((1/((3n+1)(3n+2))))  = Σ_(n=0) ^∞ ∫_0 ^1 (x^(3n) −x^(3n+1) )dx  = ∫_0 ^1 (1−x)Σ_(n=0) ^∞ x^(3n)  dx  =∫_0 ^1 (((1−x)/(1−x^3 )))dx=∫_0 ^1 ((dx/(1+x+x^2 )))  =(π/(3(√3)))
n=0(1(3n+1)(3n+2))=n=010(x3nx3n+1)dx=10(1x)n=0x3ndx=10(1x1x3)dx=10(dx1+x+x2)=π33

Leave a Reply

Your email address will not be published. Required fields are marked *