Question Number 99894 by bachamohamed last updated on 23/Jun/20
$$\:\:\: \\ $$$$\underset{\boldsymbol{{n}}\geqslant\mathrm{0}} {\sum}\:\:\frac{\mathrm{1}}{\boldsymbol{{n}}^{\mathrm{2}} +\mathrm{1}}\:=\:? \\ $$
Answered by smridha last updated on 24/Jun/20
$$\boldsymbol{{s}}\left(\boldsymbol{{a}}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{{n}}^{\mathrm{2}} +\boldsymbol{{a}}^{\mathrm{2}} }=\frac{\boldsymbol{\pi{coth}}\left(\boldsymbol{\pi{a}}\right)}{\mathrm{2}\boldsymbol{{a}}}β\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{a}}^{\mathrm{2}} } \\ $$$$\:\:\:\boldsymbol{{now}}\:\boldsymbol{{s}}\left(\mathrm{1}\right)=\frac{\boldsymbol{\pi{coth}}\left(\boldsymbol{\pi}\right)}{\mathrm{2}}β\frac{\mathrm{1}}{\mathrm{2}}\approx\mathrm{1}.\mathrm{0766}… \\ $$$$\boldsymbol{{now}}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{{n}}^{\mathrm{2}} +\mathrm{1}}=\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{1}}\approx\mathrm{2}.\mathrm{0766}…. \\ $$