Menu Close

n-0-1-n-n-4-n-2-1-




Question Number 159080 by qaz last updated on 12/Nov/21
Σ_(n=0) ^∞ (1/(n!(n^4 +n^2 +1)))=?
n=01n!(n4+n2+1)=?
Answered by mindispower last updated on 13/Nov/21
=Σ_(n≥0) (1/(n!(n^2 +1−n)(n^2 +1+n)))  =Σ_(n≥0) (1/(n!))(((an+b)/(n^2 −n+1))+((cn+d)/(n^2 +n+1)))  a+c=0,b+d=1,(a+b−c+d)=0,a−c=−1  a=−(1/2),c=(1/2)=b=d  =(1/2).Σ_(n≥0) (1/(n!))(.((−n+1)/(n^2 −n+1))+((n+1)/(n^2 +n+1)))  =(1/2).Σ_(n≥0) .(1/(n!))(−(n/(n^2 −n+1))+(1/(n^2 +n+1)))   =−(1/2)Σ_(n≥1) (1/((n−1)!(n^2 −n+1)_ ))∣_(=U_n ) +(1/2)Σ_(n≥0) (1/(n!(n^2 +n+1))),  +(1/2)Σ_(n≥0) (1/(n!))((1/(n^2 −n+1))+(n/(n^2 +n+1)))  ={−Σ_(n≥1) (1/2)U_n +Σ_(n≥0) (1/2)U_(n+1) }_(=0) +Σ_(n≥0) (1/(n!(n^2 −n+1)))+(1/2)Σ_(n≥0) (n/(n!(n^2 +n+1)))  (n/(n!(n^2 +n+1)))=((n(n+1))/((n+1)!(n^2 +n+1)))=(1/((n+1)!))−(1/((n+1)!(n^2 +n+1)))  =(1/2){Σ_(n≥0) (1/(n!(n^2 −n+1)_(.=V_n ) ))+Σ_(n≥0) (1/((n+1)!))−(1/((n+1)!(n^2 +n+1)))}  =(1/2)Σ_(n≥0) V_n −Σ_(n≥0) V_(n+1) +(1/2)Σ_(n≥0) (1/((n+1)!))=(V_0 /2)+(1/2)(e−1)  V_0 =1  S=(e/2)
=n01n!(n2+1n)(n2+1+n)=n01n!(an+bn2n+1+cn+dn2+n+1)a+c=0,b+d=1,(a+bc+d)=0,ac=1a=12,c=12=b=d=12.n01n!(.n+1n2n+1+n+1n2+n+1)=12.n0.1n!(nn2n+1+1n2+n+1)=12n11(n1)!(n2n+1)=Un+12n01n!(n2+n+1),+12n01n!(1n2n+1+nn2+n+1)={n112Un+n012Un+1}=0+n01n!(n2n+1)+12n0nn!(n2+n+1)nn!(n2+n+1)=n(n+1)(n+1)!(n2+n+1)=1(n+1)!1(n+1)!(n2+n+1)=12{n01n!(n2n+1).=Vn+n01(n+1)!1(n+1)!(n2+n+1)}=12n0Vnn0Vn+1+12n01(n+1)!=V02+12(e1)V0=1S=e2
Commented by Tawa11 last updated on 13/Nov/21
Great sir
Greatsir
Commented by mindispower last updated on 16/Nov/21
thank you sir  have  nice day
thankyousirhaveniceday

Leave a Reply

Your email address will not be published. Required fields are marked *