Question Number 144928 by ArielVyny last updated on 30/Jun/21
$$\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+{z}\right){n}!} \\ $$
Answered by Dwaipayan Shikari last updated on 01/Jul/21
$$\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}{x}^{{n}+{z}−\mathrm{1}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{x}} {x}^{{z}−\mathrm{1}} {dx}=\left[−{e}^{−{x}} {x}^{{z}−\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} +\left({z}−\mathrm{1}\right)\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{x}} {x}^{{z}−\mathrm{2}} {dx} \\ $$$${I}\left({z}−\mathrm{1}\right)=−\frac{\mathrm{1}}{{e}}+\left({z}−\mathrm{1}\right){I}\left({z}−\mathrm{2}\right) \\ $$$$…\:{Or}\:\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{x}} {x}^{{z}−\mathrm{1}} {dz}=\Gamma\left(\mathrm{1},{z}\right)\:\:\left({Incomplete}\:{Gamma}\:{function}\right) \\ $$