Menu Close

n-0-1-x-R-f-x-n-n-1-x-n-The-given-function-gives-a-linear-line-that-goes-through-points-0-n-and-1-n-0-The-function-changes-as-n-changes-What-area-is-beneath-the-shape-made-as-n-goe




Question Number 106867 by Penguin last updated on 07/Aug/20
∀n∈(0, 1)∀x∈R : f(x) = (n/(n−1))x+n  The given function gives a linear line that  goes through points (0, n) and (1−n, 0).  The function changes as n changes.  What area is beneath the shape made as  n goes from 0→1?
n(0,1)xR:f(x)=nn1x+nThegivenfunctiongivesalinearlinethatgoesthroughpoints(0,n)and(1n,0).Thefunctionchangesasnchanges.Whatareaisbeneaththeshapemadeasngoesfrom01?
Commented by Penguin last updated on 07/Aug/20
Is the solution:  A=∫_0 ^( 1) ∫_0 ^( 1) f dxdn      ??
Isthesolution:A=0101fdxdn??
Commented by Penguin last updated on 07/Aug/20
Commented by Penguin last updated on 07/Aug/20
Always makes triangle with A=(1/2)n(1−n)  A=(1/n)(t_1 +t_2 +...t_n )  t_n =sum of nth triangle     t_n =(1/2)n(1−n)  t_(n+1) (1/2)(n+ε)(1−n−ε)     for infinit triangles:  A=(1/1)∫_0 ^( 1) (1/2)n(1−n)dn  A=(1/2)[(1/2)n^2 −(1/3)n^3 ]_0 ^1   A=(1/(12))  Thks looks wrong, as the plot looks like:  A=1−(π/4)    ((1/4) circle in a sqare)
AlwaysmakestrianglewithA=12n(1n)A=1n(t1+t2+tn)tn=sumofnthtriangletn=12n(1n)tn+112(n+ε)(1nε)forinfinittriangles:A=110112n(1n)dnA=12[12n213n3]01A=112Thkslookswrong,astheplotlookslike:A=1π4(14circleinasqare)
Answered by Her_Majesty last updated on 07/Aug/20
f_p : y=(p/(p−1))x+p  f_q : y=(q/(q−1))x+q  f_p ∩f_q :  (p/(p−1))x+p=(q/(q−1))x+q  x=(p−1)(q−1)  y=pq  now q→p  x=(p−1)^2   y=p^2   p=1±(√x)  y=(1±(√x))^2 =1±2(√x)+x  your curve y=1−2(√x)+x  ∫_0 ^1 (1−2(√x)+x)dx=[x−(4/3)x^(3/2) +(1/2)x^2 ]_0 ^1 =(1/6)  not sure if this makes sense...
fp:y=pp1x+pfq:y=qq1x+qfpfq:pp1x+p=qq1x+qx=(p1)(q1)y=pqnowqpx=(p1)2y=p2p=1±xy=(1±x)2=1±2x+xyourcurvey=12x+x10(12x+x)dx=[x43x3/2+12x2]01=16notsureifthismakessense
Commented by mr W last updated on 07/Aug/20
answer is correct!
answeriscorrect!
Answered by mr W last updated on 07/Aug/20
(y/n)+(x/(1−n))=1   ...(i) eqn. of L_1   (y/(n+dn))+(x/(1−n−dn))=1   ...(ii) eqn. of L_2   intersection of (i) and (ii) at (x_1 ,y_1 )  ⇒(y_1 /(n(1−n−dn)))−(y_1 /((n+dn)(1−n)))=(1/(1−n−dn))−(1/(1−n))  ⇒y_1 =n(n+dn)  dA=((y_1 dn)/2)=((n(n+dn)dn)/2)=((n^2 dn)/2)  A=(1/2)∫_0 ^( 1) n^2 dn=(1/2)×(1/3)=(1/6)
yn+x1n=1(i)eqn.ofL1yn+dn+x1ndn=1(ii)eqn.ofL2intersectionof(i)and(ii)at(x1,y1)y1n(1ndn)y1(n+dn)(1n)=11ndn11ny1=n(n+dn)dA=y1dn2=n(n+dn)dn2=n2dn2A=1201n2dn=12×13=16
Commented by Her_Majesty last updated on 07/Aug/20
thank you
thankyou
Commented by mr W last updated on 07/Aug/20

Leave a Reply

Your email address will not be published. Required fields are marked *