Menu Close

n-0-2-n-1-3-n-2-4-n-3-5-n-




Question Number 113354 by Dwaipayan Shikari last updated on 12/Sep/20
( ((n),(0) )/2)−( ((n),(1) )/3)+( ((n),(2) )/4)−( ((n),(3) )/5)+.....n
$$\frac{\begin{pmatrix}{{n}}\\{\mathrm{0}}\end{pmatrix}}{\mathrm{2}}−\frac{\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}}{\mathrm{3}}+\frac{\begin{pmatrix}{{n}}\\{\mathrm{2}}\end{pmatrix}}{\mathrm{4}}−\frac{\begin{pmatrix}{{n}}\\{\mathrm{3}}\end{pmatrix}}{\mathrm{5}}+…..{n} \\ $$
Commented by mr W last updated on 13/Sep/20
(1−x)^n =Σ_(k=0) ^n C_k ^n (−1)^k x^k   x^2 (1−x)^n =Σ_(k=0) ^n C_k ^n (−1)^k x^(k+2)   ∫_0 ^1 x^2 (1−x)^n dx=Σ_(k=0) ^n C_k ^n (−1)^k ∫^1 _0 x^(k+2) dx  ∫_0 ^1 x^2 (1−x)^n dx=Σ_(k=0) ^n (−1)^k (C_k ^n /(k+2))  ...
$$\left(\mathrm{1}−{x}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{k}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} {x}^{{k}} \\ $$$${x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{k}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} {x}^{{k}+\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)^{{n}} {dx}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{k}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} \underset{\mathrm{0}} {\int}^{\mathrm{1}} {x}^{{k}+\mathrm{2}} {dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)^{{n}} {dx}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} \frac{{C}_{{k}} ^{{n}} }{{k}+\mathrm{2}} \\ $$$$… \\ $$
Commented by maths mind last updated on 13/Sep/20
nice sir β(a,b)=((Γ(a)Γ(b))/(Γ(a+b)))=∫_0 ^1 x^(a−1) (1−x)^(b−1) dx can help you    too finish i hop you doing well verry nice day sir
$${nice}\:{sir}\:\beta\left({a},{b}\right)=\frac{\Gamma\left({a}\right)\Gamma\left({b}\right)}{\Gamma\left({a}+{b}\right)}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{b}−\mathrm{1}} {dx}\:{can}\:{help}\:{you} \\ $$$$ \\ $$$${too}\:{finish}\:{i}\:{hop}\:{you}\:{doing}\:{well}\:{verry}\:{nice}\:{day}\:{sir} \\ $$
Commented by mr W last updated on 14/Sep/20
thanks alot sir!
$${thanks}\:{alot}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *