Menu Close

n-0-2n-1-8-n-n-2-Help-please-




Question Number 150432 by Jamshidbek last updated on 12/Aug/21
Σ_(n=0) ^∞ (((2n+1)!)/(8^n ∙(n!)^2 ))=?     Help please
n=0(2n+1)!8n(n!)2=?Helpplease
Answered by Olaf_Thorendsen last updated on 12/Aug/21
f(x) = (1/( (1−x)^(3/2) )) = (1−x)^(−(3/2))   f′(x) = ((1.3)/2)(1−x)^(−(5/2))   f′′(x) = ((1.3.5)/2^2 )(1−x)^(−(7/2) )   f′′′(x) = ((1.3.5.7)/2^3 )(1−x)^(−(9/2)  )   ...  f^((n)) (x) = ((1.3.5.7...(2n+1))/2^n )(1−x)^(−(((2n+3))/2))   f^((n)) (x) = (((2n+1)!)/(2^n .2.4.6...2n))(1−x)^(−(((2n+3))/2))   f^((n)) (x) = (((2n+1)!)/(2^(2n) n!))(1−x)^(−(((2n+3))/2))   f^((n)) (0) = (((2n+1)!)/(2^(2n) n!))  f(x) = Σ_(n=0) ^∞ ((f^((n)) (0))/(n!))x^n   f((1/2)) = (1/((1−(1/2))^(3/2) )) = Σ_(n=0) ^∞ (((2n+1)!)/(2^(2n) n!^2 )).((1/2))^n   ⇒ Σ_(n=0) ^∞ (((2n+1)!)/(2^(3n) n!^2 )) = Σ_(n=0) ^∞ (((2n+1)!)/(8^n .n!^2 )) = 2(√2)
f(x)=1(1x)3/2=(1x)32f(x)=1.32(1x)52f(x)=1.3.522(1x)72f(x)=1.3.5.723(1x)92f(n)(x)=1.3.5.7(2n+1)2n(1x)(2n+3)2f(n)(x)=(2n+1)!2n.2.4.62n(1x)(2n+3)2f(n)(x)=(2n+1)!22nn!(1x)(2n+3)2f(n)(0)=(2n+1)!22nn!f(x)=n=0f(n)(0)n!xnf(12)=1(112)3/2=n=0(2n+1)!22nn!2.(12)nn=0(2n+1)!23nn!2=n=0(2n+1)!8n.n!2=22
Commented by Tawa11 last updated on 12/Aug/21
Great sir.
Greatsir.
Commented by Tawa11 last updated on 12/Aug/21
Sir help   Q150462
SirhelpQ150462
Commented by Ar Brandon last updated on 12/Aug/21
Super !
Super!
Commented by amin96 last updated on 12/Aug/21
Very nice
Verynice

Leave a Reply

Your email address will not be published. Required fields are marked *