n-0-2n-2n-1-n-1-x-2n-2-x-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 144322 by qaz last updated on 24/Jun/21 ∑∞n=0(2n)!!(2n+1)!!(n+1)x2n+2=?……….∣x∣⩽1 Answered by mindispower last updated on 25/Jun/21 (2n)!!=2n.n!(2n+1)!!=(2n+1)!2n.n!⇔∑n⩾02n.n!(2n+1)!2nn!(n+1)x2n+2=∑n⩾022n.(n!)2x2n+2(2n+1)!.(n+1)=12∑n⩾022(n+1).(n!(n+1))2(2n+2)!(n+1)2.x2(n+1)=12.∑n⩾1(2n)2.(n!)2(2n)!n2.x2n=12∑n⩾1(2x)2nn2.C2nn=arcsin2(x) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-sin-pi-7-3-cos-2x-sin-pi-14-cos-pi-14-10-sin-x-find-solution-Next Next post: i-1-n-1-n-1-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.