Menu Close

n-0-2n-2n-1-n-1-x-2n-2-x-1-




Question Number 144322 by qaz last updated on 24/Jun/21
Σ_(n=0) ^∞ (((2n)!!)/((2n+1)!!(n+1)))x^(2n+2) =?..........∣x∣≤1
n=0(2n)!!(2n+1)!!(n+1)x2n+2=?.x∣⩽1
Answered by mindispower last updated on 25/Jun/21
(2n)!!=2^n .n!  (2n+1)!!=(((2n+1)!)/(2^n .n!))  ⇔Σ_(n≥0) ((2^n .n!)/((((2n+1)!)/(2^n n!))(n+1)))x^(2n+2)   =Σ_(n≥0) ((2^(2n) .(n!)^2 x^(2n+2) )/((2n+1)!.(n+1)))  =(1/2)Σ_(n≥0) ((2^(2(n+1)) .(n!(n+1))^2 )/((2n+2)!(n+1)^2 )).x^(2(n+1))   =(1/2).Σ_(n≥1) (((2^n )^2 .(n!)^2 )/((2n)!n^2 )).x^(2n)   =(1/2)Σ_(n≥1) (((2x)^(2n) )/(n^2 .C_(2n) ^n ))=arcsin^2 (x)
(2n)!!=2n.n!(2n+1)!!=(2n+1)!2n.n!n02n.n!(2n+1)!2nn!(n+1)x2n+2=n022n.(n!)2x2n+2(2n+1)!.(n+1)=12n022(n+1).(n!(n+1))2(2n+2)!(n+1)2.x2(n+1)=12.n1(2n)2.(n!)2(2n)!n2.x2n=12n1(2x)2nn2.C2nn=arcsin2(x)

Leave a Reply

Your email address will not be published. Required fields are marked *